Suppr超能文献

使用自校准去噪器的磁共振成像恢复

MRI RECOVERY WITH A SELF-CALIBRATED DENOISER.

作者信息

Liu Sizhuo, Schniter Philip, Ahmad Rizwan

机构信息

Department of Biomedical Engineering, Ohio State University, Columbus OH, 43210, USA.

Department of Electrical and Computer Engineering, Ohio State University, Columbus OH, 43210, USA.

出版信息

Proc IEEE Int Conf Acoust Speech Signal Process. 2022 May;2022:1351-1355. doi: 10.1109/icassp43922.2022.9746785. Epub 2022 Apr 27.

Abstract

Plug-and-play (PnP) methods that employ application-specific denoisers have been proposed to solve inverse problems, including MRI reconstruction. However, training application-specific denoisers is not feasible for many applications due to the lack of training data. In this work, we propose a PnP-inspired recovery method that does not require data beyond the single, incomplete set of measurements. The proposed self-supervised method, called recovery with a self-calibrated denoiser (ReSiDe), trains the denoiser from the patches of the image being recovered. The denoiser training and a call to the denoising subroutine are performed in each iteration of a PnP algorithm, leading to a progressive refinement of the reconstructed image. For validation, we compare ReSiDe with a compressed sensing-based method and a PnP method with BM3D denoising using single-coil MRI brain data.

摘要

已经提出了采用特定应用去噪器的即插即用(PnP)方法来解决包括磁共振成像(MRI)重建在内的逆问题。然而,由于缺乏训练数据,对于许多应用来说,训练特定应用的去噪器是不可行的。在这项工作中,我们提出了一种受PnP启发的恢复方法,该方法不需要除单个不完整测量集之外的数据。所提出的自监督方法,称为使用自校准去噪器的恢复(ReSiDe),从正在恢复的图像块中训练去噪器。去噪器训练和对去噪子程序的调用在PnP算法的每次迭代中执行,从而导致重建图像的逐步细化。为了进行验证,我们使用单线圈MRI脑数据将ReSiDe与基于压缩感知的方法以及采用BM3D去噪的PnP方法进行了比较。

相似文献

1
MRI RECOVERY WITH A SELF-CALIBRATED DENOISER.使用自校准去噪器的磁共振成像恢复
Proc IEEE Int Conf Acoust Speech Signal Process. 2022 May;2022:1351-1355. doi: 10.1109/icassp43922.2022.9746785. Epub 2022 Apr 27.
3
Denoising Generalized Expectation-Consistent Approximation for MR Image Recovery.用于磁共振图像恢复的去噪广义期望一致逼近
IEEE J Sel Areas Inf Theory. 2022 Sep;3(3):528-542. doi: 10.1109/JSAIT.2022.3207109. Epub 2022 Sep 15.
4
5
On Plug-and-Play Regularization Using Linear Denoisers.关于使用线性去噪器的即插即用正则化
IEEE Trans Image Process. 2021;30:4802-4813. doi: 10.1109/TIP.2021.3075092. Epub 2021 May 7.
7
EXPECTATION CONSISTENT PLUG-AND-PLAY FOR MRI.用于磁共振成像的期望一致即插即用方法
Proc IEEE Int Conf Acoust Speech Signal Process. 2022 May;2022:8667-8671. doi: 10.1109/icassp43922.2022.9747424. Epub 2022 Apr 27.
9
Plug-and-Play Image Restoration With Deep Denoiser Prior.基于深度去噪器先验的即插即用图像恢复
IEEE Trans Pattern Anal Mach Intell. 2022 Oct;44(10):6360-6376. doi: 10.1109/TPAMI.2021.3088914. Epub 2022 Sep 14.

本文引用的文献

1
2
ENSURE: ENSEMBLE STEIN'S UNBIASED RISK ESTIMATOR FOR UNSUPERVISED LEARNING.确保:用于无监督学习的集成斯坦无偏风险估计器。
Proc IEEE Int Conf Acoust Speech Signal Process. 2021 Jun;2021. doi: 10.1109/icassp39728.2021.9414513.
3
Time-Dependent Deep Image Prior for Dynamic MRI.时变深度图像先验在动态 MRI 中的应用。
IEEE Trans Med Imaging. 2021 Dec;40(12):3337-3348. doi: 10.1109/TMI.2021.3084288. Epub 2021 Nov 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验