Suppr超能文献

壳聚糖增强了带有磁性纳米粒子的细胞穿透肽的寡核苷酸复合物的基因传递。

Chitosan enhances gene delivery of oligonucleotide complexes with magnetic nanoparticles-cell-penetrating peptide.

机构信息

1 Department of Biochemistry and Biophysics, Stockholm University.

2 Department of Chemistry, Faculty of Science, Assuit University Assuit, Egypt.

出版信息

J Biomater Appl. 2018 Sep;33(3):392-401. doi: 10.1177/0885328218796623.

Abstract

Gene-based therapies, including the delivery of oligonucleotides, offer promising methods for the treatment of cancer cells. However, they have various limitations including low efficiency. Herein, cell-penetrating peptides (CPPs)-conjugated chitosan-modified iron oxide magnetic nanoparticles (CPPs-CTS@MNPs) with high biocompatibility as well as high efficiency were tested for the delivery of oligonucleotides such as plasmid pGL3, splice correction oligonucleotides, and small-interfering RNA. A biocompatible nanocomposite, in which CTS@MNPs was incorporated in non-covalent complex with CPPs-oligonucleotide, is developed. Modifying the surface of magnetic nanoparticles with cationic chitosan-modified iron oxide improved the performance of magnetic nanoparticles-CPPs for oligonucleotide delivery. CPPs-CTS@MNPs complexes enhance oligonucleotide transfection compared to CPPs@MNPs or CPPs. The hydrophilic character of CTS@MNPs improves complexation with plasmid pGL3, splice correction oligonucleotides, and small-interfering RNA payload, which consequently resulted in not only strengthening the colloidal stability of the constructed complex but also improving their biocompatibility. Transfection using PF14-splice correction oligonucleotides-CTS@MNPs showed sixfold increase of the transfection compared to splice correction oligonucleotides-PF14 that showed higher transfection than the commercially available lipid-based vector Lipofectamine™ 2000. Nanoscaled CPPs-CTS@MNPs comprise a new family of biomaterials that can circumvent some of the limitations of CPPs or magnetic nanoparticles.

摘要

基因治疗,包括寡核苷酸的递呈,为癌细胞的治疗提供了很有前途的方法。然而,它们有各种局限性,包括效率低。在此,测试了细胞穿透肽(CPPs)-壳聚糖修饰的氧化铁磁性纳米粒子(CPPs-CTS@MNPs)作为高效的寡核苷酸递呈载体,如质粒 pGL3、剪接校正寡核苷酸和小干扰 RNA。开发了一种具有生物相容性的纳米复合材料,其中 CTS@MNPs 与 CPPs-寡核苷酸以非共价复合物的形式存在。用阳离子壳聚糖修饰的氧化铁修饰磁性纳米粒子的表面,提高了磁性纳米粒子-CPPs 对寡核苷酸递呈的性能。与 CPPs@MNPs 或 CPPs 相比,CPPs-CTS@MNPs 复合物增强了寡核苷酸转染。CTS@MNPs 的亲水性改善了与质粒 pGL3、剪接校正寡核苷酸和小干扰 RNA 有效负载的复合物形成,这不仅增强了所构建复合物的胶体稳定性,而且提高了其生物相容性。用 PF14-剪接校正寡核苷酸-CTS@MNPs 进行转染,与显示出比商业上可利用的脂质载体 Lipofectamine™ 2000 更高转染率的剪接校正寡核苷酸-PF14 相比,转染效率提高了六倍。纳米级 CPPs-CTS@MNPs 组成了一类新的生物材料,可以规避 CPPs 或磁性纳米粒子的一些局限性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验