Adina Gamse Elisheva, Weitsman Jonathan
Department of Mathematics, University of Toronto, Toronto, Ontario, Canada.
Department of Mathematics, Northeastern University, Boston, MA, USA
Philos Trans A Math Phys Eng Sci. 2018 Sep 17;376(2131):20170427. doi: 10.1098/rsta.2017.0427.
We consider the moduli space of flat (2 + 1)-connections (up to gauge transformations) on a Riemann surface, with fixed holonomy around a marked point. There are natural line bundles over this moduli space; we construct geometric representatives for the Chern classes of these line bundles, and prove that the ring generated by these Chern classes vanishes below the dimension of the moduli space, generalizing a conjecture of Newstead.This article is part of the theme issue 'Finite dimensional integrable systems: new trends and methods'.
我们考虑黎曼曲面上具有围绕一个标记点的固定和乐性的平坦(2 + 1)联络(直至规范变换)的模空间。在这个模空间上存在自然的线丛;我们为这些线丛的陈类构造几何代表元,并证明由这些陈类生成的环在模空间维度以下消失,推广了纽斯泰德的一个猜想。本文是主题为“有限维可积系统:新趋势与方法”的一部分。