Suppr超能文献

黎曼曲面上平坦(2 + 1)联络模空间上同调环中的关系

Relations in the cohomology ring of the moduli space of flat (2 + 1)-connections on a Riemann surface.

作者信息

Adina Gamse Elisheva, Weitsman Jonathan

机构信息

Department of Mathematics, University of Toronto, Toronto, Ontario, Canada.

Department of Mathematics, Northeastern University, Boston, MA, USA

出版信息

Philos Trans A Math Phys Eng Sci. 2018 Sep 17;376(2131):20170427. doi: 10.1098/rsta.2017.0427.

Abstract

We consider the moduli space of flat (2 + 1)-connections (up to gauge transformations) on a Riemann surface, with fixed holonomy around a marked point. There are natural line bundles over this moduli space; we construct geometric representatives for the Chern classes of these line bundles, and prove that the ring generated by these Chern classes vanishes below the dimension of the moduli space, generalizing a conjecture of Newstead.This article is part of the theme issue 'Finite dimensional integrable systems: new trends and methods'.

摘要

我们考虑黎曼曲面上具有围绕一个标记点的固定和乐性的平坦(2 + 1)联络(直至规范变换)的模空间。在这个模空间上存在自然的线丛;我们为这些线丛的陈类构造几何代表元,并证明由这些陈类生成的环在模空间维度以下消失,推广了纽斯泰德的一个猜想。本文是主题为“有限维可积系统:新趋势与方法”的一部分。

相似文献

2
Convexity of the moment map image for torus actions on -symplectic manifolds.环面作用于\(K\)-辛流形上时矩映射像的凸性
Philos Trans A Math Phys Eng Sci. 2018 Sep 17;376(2131):20170420. doi: 10.1098/rsta.2017.0420.
5
Commutative avatars of representations of semisimple Lie groups.半单李群表示的交换化身。
Proc Natl Acad Sci U S A. 2024 Sep 17;121(38):e2319341121. doi: 10.1073/pnas.2319341121. Epub 2024 Sep 11.
6
On the integrability of Birkhoff billiards.关于伯克霍夫台球的可积性
Philos Trans A Math Phys Eng Sci. 2018 Sep 17;376(2131):20170419. doi: 10.1098/rsta.2017.0419.
8
Membranes on an orbifold.orbifold上的膜。
Phys Rev Lett. 2008 Jul 25;101(4):041602. doi: 10.1103/PhysRevLett.101.041602.
9
Poisson traces, D-modules, and symplectic resolutions.泊松迹、D-模与辛分解
Lett Math Phys. 2018;108(3):633-678. doi: 10.1007/s11005-017-1024-1. Epub 2017 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验