Nguyen Chantal, Schlesinger Kimberly J, James Timothy W, James Kristin M, Sah Robert L, Masuda Koichi, Carlson Jean M
Department of Physics, University of California, Santa Barbara, UC Santa Barbara, Santa Barbara, CA 93106-9530, USA.
BioProtonics, LLC, 3090 Old Calzada Rd, Santa Ynez, CA 93460, USA.
R Soc Open Sci. 2018 Aug 29;5(8):180563. doi: 10.1098/rsos.180563. eCollection 2018 Aug.
Osteoporosis, characterized by increased fracture risk and bone fragility, impacts millions of adults worldwide, but effective, non-invasive and easily accessible diagnostic tests of the disease remain elusive. We present a magnetic resonance (MR) technique that overcomes the motion limitations of traditional MR imaging to acquire high-resolution frequency-domain data to characterize the texture of biological tissues. This technique does not involve obtaining full two-dimensional or three-dimensional images, but can probe scales down to the order of 40 μm and in particular uncover structural information in trabecular bone. Using micro-computed tomography data of vertebral trabecular bone, we computationally validate this MR technique by simulating MR measurements of a 'ratio metric' determined from a few -space values corresponding to trabecular thickness and spacing. We train a support vector machine classifier on ratio metric values determined from healthy and simulated osteoporotic bone data, which we use to accurately classify osteoporotic bone.
骨质疏松症以骨折风险增加和骨骼脆弱为特征,影响着全球数百万成年人,但针对该疾病的有效、非侵入性且易于获得的诊断测试仍然难以实现。我们提出了一种磁共振(MR)技术,该技术克服了传统MR成像的运动限制,以获取高分辨率频域数据来表征生物组织的纹理。此技术不涉及获取完整的二维或三维图像,但可以探测到低至40μm量级的尺度,尤其能够揭示小梁骨中的结构信息。利用椎体小梁骨的显微计算机断层扫描数据,我们通过模拟由对应于小梁厚度和间距的几个空间值确定的“比率度量”的MR测量,对该MR技术进行了计算验证。我们基于从健康和模拟骨质疏松骨数据确定的比率度量值训练了一个支持向量机分类器,并用其准确地对骨质疏松骨进行分类。