Zheng Weidong, Huang Bin, Li Hongkun, Koh Yee Kan
Department of Mechanical Engineering , National University of Singapore , 117576 , Singapore.
Centre for Advanced 2D Materials , National University of Singapore , 117542 , Singapore.
ACS Appl Mater Interfaces. 2018 Oct 17;10(41):35487-35494. doi: 10.1021/acsami.8b12480. Epub 2018 Oct 2.
Low thermal conductance of metal contacts is one of the main challenges in the thermal management of nanoscale devices of graphene and other two-dimensional (2D) materials. Previous attempts to search for metal contacts with high thermal conductance yielded limited success because of the incomplete understanding of the origins of low thermal conductance. In this paper, we carefully study the intrinsic thermal conductance of metal/graphene/metal interfaces to identify the heat transport mechanisms across graphene interfaces. We find that unlike metal/diamond interfaces, the intrinsic thermal conductance of most graphene interfaces (except Ti and TiN ) is only ≈50% of the phonon radiation limit, suggesting that heat is carried across graphene interfaces mainly through the elastic transmission of phonons. We thus propose a convenient approach to substantially enhance the phononic heat transport across metal contacts on graphene, by better matching the energy of phonons in metals and graphene, for example, using metallic nitrides. We test the idea with TiN with phonon frequencies of up to 1.2 × 10 rad/s, 39% of the highest phonon frequencies in graphene of 3.1 × 10 rad/s. Interestingly, we obtain a huge thermal conductance of 270 MW m K for the TiN /graphene interface, which is ≈140% of the phonon radiation limit. Thus, the huge thermal conductance cannot be fully explained by enhanced elastic phonon transport alone, but may be partially attributed to inelastic phonon transport across the TiN /graphene interface. Our work provides guidance for the search for good metal contacts on 2D materials and devices.
金属接触的低热导率是石墨烯及其他二维材料纳米级器件热管理中的主要挑战之一。由于对低热导率起源的理解不完整,以往寻找高导热率金属接触的尝试取得的成功有限。在本文中,我们仔细研究了金属/石墨烯/金属界面的本征热导率,以确定跨石墨烯界面的热传输机制。我们发现,与金属/金刚石界面不同,大多数石墨烯界面(除了Ti和TiN)的本征热导率仅约为声子辐射极限的50%,这表明热量主要通过声子的弹性传输穿过石墨烯界面。因此,我们提出了一种简便的方法,通过更好地匹配金属和声子中的声子能量,例如使用金属氮化物,来大幅增强跨石墨烯上金属接触的声子热传输。我们用声子频率高达1.2×10 rad/s的TiN来验证这一想法,该频率是石墨烯中最高声子频率3.1×10 rad/s的39%。有趣的是,我们得到了TiN/石墨烯界面高达270 MW m K的巨大热导率,这约为声子辐射极限的140%。因此,巨大的热导率不能仅通过增强的弹性声子传输来完全解释,而可能部分归因于跨TiN/石墨烯界面的非弹性声子传输。我们的工作为在二维材料和器件上寻找良好的金属接触提供了指导。