Yang Haiying, Tang Yunqing, Yang Ping
Laboratory of Advanced Design, Manufacturing & Reliability for MEMS/NEMS/OEDS, School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
Nanoscale. 2019 Aug 1;11(30):14155-14163. doi: 10.1039/c9nr03538a.
We implement non-equilibrium Green's function (NEGF) calculations to investigate thermal transport across graphene/metal interfaces with interlayer van der Waals interactions to understand the factors influencing thermal conductance across the interface. It is found that interfaces with a smaller interfacial lattice mismatch, lighter metal substrate and stronger interfacial bonding strength will show better interfacial thermal transport abilities. Strain induced by the interfacial lattice mismatch in graphene is the key factor for the decrease of interfacial phonon transmission in the main frequency range of metals, which finally results in a decrease of interfacial thermal conductance. A comprehensive interfacial influencing factor is proposed combining the factors of graphene density, metal density and interfacial binding energy to realize the prediction of interfacial thermal conductance across the graphene/metal interface. The results are hoped to promote the understanding of the thermal transport mechanism and design of graphene based 2D/3D materials interfaces.
我们进行非平衡格林函数(NEGF)计算,以研究具有层间范德华相互作用的石墨烯/金属界面的热输运,从而了解影响界面热导率的因素。研究发现,具有较小界面晶格失配、较轻金属衬底和较强界面结合强度的界面将表现出更好的界面热输运能力。石墨烯中由界面晶格失配引起的应变是金属主要频率范围内界面声子传输减少的关键因素,最终导致界面热导率降低。结合石墨烯密度、金属密度和界面结合能等因素,提出了一个综合的界面影响因素,以实现对石墨烯/金属界面热导率的预测。希望这些结果能促进对基于石墨烯的二维/三维材料界面热输运机制的理解和设计。