Zheng Weidong, Huang Bin, Koh Yee Kan
Department of Mechanical Engineering , National University of Singapore , 117576 Singapore.
Centre for Advanced 2D Materials , National University of Singapore , 117542 Singapore.
ACS Appl Mater Interfaces. 2020 Feb 26;12(8):9572-9579. doi: 10.1021/acsami.9b18290. Epub 2020 Feb 14.
In many ultralow thermal conductivity materials, interfaces of dissimilar materials are employed to impede heat flow perpendicular to the interfaces. However, when packed within a distance comparable to the phonon wavelengths, these interfaces are coupled and thus ineffective to scatter low-energy phonons, due to either coherent phonon transmission across the closely packed interfaces or weak coupling of the low-energy phonons and the interfaces. Here, we propose to block the propagation of these low-energy phonons by periodically distributed scarcity of available low-energy phonon modes using graphene/metal heterostructures of transferred graphene and ultrathin metal films. We demonstrate the effectiveness of graphene in blocking propagation of low-energy phonons by comparing the effective transmission probabilities of phonons in a wide range of multilayered structures; we find that interfaces in our graphene/metal heterostructures remain decoupled even when the spacing between interfaces is <2 nm. With the proposed strategy, we successfully achieve an ultralow thermal conductivity of Λ = 0.06 W m K and a world-record lowest thermal diffusivity of α = 2.6 × 10 cm s suitable for thermal insulation. Moreover, we demonstrate the capability to tune the electronic heat transport across the new materials by creating atomic-scale pinholes on graphene through magnetron sputtering, with electrons carrying ≈50% of heat when Λ is ≈0.15 W m K. With the ultralow Λ and substantial electronic transport, the new graphene/metal heterostructures could be explored for thermoelectric applications.
在许多超低热导率材料中,不同材料的界面被用于阻碍垂直于界面的热流。然而,当这些界面的间距与声子波长相当,由于声子在紧密堆积的界面间的相干传输,或者低能声子与界面间的弱耦合,这些界面会相互耦合,从而无法有效地散射低能声子。在此,我们提出利用转移石墨烯和超薄金属膜构成的石墨烯/金属异质结构,通过周期性分布的低能声子模式稀缺性来阻挡这些低能声子的传播。我们通过比较多种多层结构中声子的有效传输概率,证明了石墨烯在阻挡低能声子传播方面的有效性;我们发现,即使界面间距小于2纳米,我们的石墨烯/金属异质结构中的界面仍保持解耦状态。采用所提出的策略,我们成功实现了超低热导率Λ = 0.06 W m K以及世界纪录最低的热扩散率α = 2.6×10 cm s,适用于隔热。此外,我们通过磁控溅射在石墨烯上制造原子尺度的针孔,展示了调节跨新材料的电子热传输的能力,当Λ约为0.15 W m K时,电子携带约50%的热量。凭借超低的Λ和可观的电子传输,新型石墨烯/金属异质结构可用于热电应用探索。