文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

EORTC-QLQ-C30 与 EQ-5D-3L 映射:现有算法和新开发算法的评估。

Mapping the EORTC-QLQ-C30 to the EQ-5D-3L: An Assessment of Existing and Newly Developed Algorithms.

机构信息

School of Arts and Social Sciences, Department of Economics, City University, London, UK (FW).

Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK (BD).

出版信息

Med Decis Making. 2018 Nov;38(8):954-967. doi: 10.1177/0272989X18797588. Epub 2018 Sep 18.


DOI:10.1177/0272989X18797588
PMID:30226101
Abstract

OBJECTIVES: To assess the external validity of mapping algorithms for predicting EQ-5D-3L utility values from EORTC QLQ-C30 responses not previously validated and to assess whether statistical models not previously applied are better suited for mapping the EORTC QLQ-C30 to the EQ-5D-3L. METHODS: In total, 3866 observations for 1719 patients from a longitudinal study (Cancer 2015) were used to validate existing algorithms. Predictive accuracy was compared to previously validated algorithms using root mean squared error, mean absolute error across the EQ-5D-3L range, and for 10 tumor-type specific samples as well as using differences between estimated quality-adjusted life years. Thirteen new algorithms were estimated using a subset of the Cancer 2015 data (3203 observations for 1419 patients) applying various linear, response mapping, beta, and mixture models. Validation was performed using 2 data sets composed of patients with varying disease severity not used in the estimation and all available algorithms ranked on their performance. RESULTS: None of the 5 existing algorithms offer an improvement in predictive accuracy over preferred algorithms from previous validation studies. Of the newly estimated algorithms, a 2-part beta model performed the best across the validation criteria and in data sets composed of patients with different levels of disease severity. Validation results did, however, vary widely between the 2 data sets, and the most accurate algorithm appears to depend on health state severity as the distribution of observed EQ-5D-3L values varies. Linear models performed better for patients in relatively good health, whereas beta, mixture, and response mapping models performed better for patients in worse health. CONCLUSION: The most appropriate mapping algorithm to apply in practice may depend on the disease severity of the patient sample whose utility values are being predicted.

摘要

目的:评估未经验证的 EORTC QLQ-C30 反应预测 EQ-5D-3L 效用值的映射算法的外部有效性,并评估以前未应用的统计模型是否更适合将 EORTC QLQ-C30 映射到 EQ-5D-3L。

方法:共使用来自纵向研究(癌症 2015 年)的 1719 名患者的 3866 个观察值来验证现有算法。通过均方根误差、EQ-5D-3L 范围内的平均绝对误差以及 10 个肿瘤类型特定样本来比较预测准确性,与以前验证的算法进行比较,同时还比较了估计的质量调整生命年之间的差异。使用癌症 2015 年数据的一个子集(1419 名患者的 3203 个观察值)估计了 13 种新算法,应用了各种线性、反应映射、β和混合模型。使用未用于估计的具有不同疾病严重程度的患者的两个数据集和所有可用算法对验证进行了验证,并根据其性能对算法进行了排名。

结果:在预测准确性方面,没有一个现有的算法比以前验证研究中的首选算法有所提高。在新估计的算法中,两部分β模型在所有验证标准和由不同疾病严重程度患者组成的数据集上表现最佳。然而,验证结果在两个数据集之间差异很大,最准确的算法似乎取决于健康状况的严重程度,因为观察到的 EQ-5D-3L 值的分布有所不同。线性模型在健康状况相对较好的患者中表现更好,而β、混合和反应映射模型在健康状况较差的患者中表现更好。

结论:在实践中应用的最合适的映射算法可能取决于正在预测其效用值的患者样本的疾病严重程度。

相似文献

[1]
Mapping the EORTC-QLQ-C30 to the EQ-5D-3L: An Assessment of Existing and Newly Developed Algorithms.

Med Decis Making. 2018-9-18

[2]
Mapping the EORTC QLQ-C30 onto the EQ-5D-3L: assessing the external validity of existing mapping algorithms.

Qual Life Res. 2016-4

[3]
Evaluation of the performance of algorithms mapping EORTC QLQ-C30 onto the EQ-5D index in a metastatic colorectal cancer cost-effectiveness model.

Health Qual Life Outcomes. 2020-7-20

[4]
Mapping the EORTC QLQ-C30 to EQ-5D-3L in patients with breast cancer.

BMC Cancer. 2021-11-18

[5]
Comparing the mapping between EQ-5D-5L, EQ-5D-3L and the EORTC-QLQ-C30 in non-small cell lung cancer patients.

Health Qual Life Outcomes. 2016-4-12

[6]
Mapping EORTC QLQ-C30 and FACT-G onto EQ-5D-5L index for patients with cancer.

Health Qual Life Outcomes. 2020-11-3

[7]
Mapping EORTC-QLQ-C30 to EQ-5D-3L in patients with colorectal cancer.

J Med Econ. 2017-2

[8]
An assessment of the external validity of mapping QLQ-C30 to EQ-5D preferences.

Qual Life Res. 2012-6-29

[9]
Mapping the cancer-specific EORTC QLQ-C30 to the preference-based EQ-5D, SF-6D, and 15D instruments.

Value Health. 2009-6-25

[10]
Testing mapping algorithms of the cancer-specific EORTC QLQ-C30 onto EQ-5D in malignant mesothelioma.

Health Qual Life Outcomes. 2015-1-23

引用本文的文献

[1]
Contributing to a value-based health care framework for lung cancer patients in Switzerland - A methodological approach to merge routinely collected hospital data.

PLoS One. 2025-7-10

[2]
A systematic review of health state utility values for older people with acute myeloid leukaemia.

Qual Life Res. 2024-11

[3]
Mapping the EORTC QLQ-C30 and QLQ H&N35 to the EQ-5D-5L and SF-6D for papillary thyroid carcinoma.

Qual Life Res. 2024-2

[4]
Mapping the Patient-Reported Outcomes Measurement Information System (PROMIS-29) to EQ-5D-5L.

Pharmacoeconomics. 2023-2

[5]
Health utilities for non-melanoma skin cancers and pre-cancerous lesions: A systematic review.

Skin Health Dis. 2021-6-4

[6]
Mapping the EORTC QLQ-C30 to EQ-5D-3L in patients with breast cancer.

BMC Cancer. 2021-11-18

[7]
Indirect and Direct Mapping of the Cancer-Specific EORTC QLQ-C30 onto EQ-5D-5L Utility Scores.

Appl Health Econ Health Policy. 2022-1

[8]
Evaluating cost-effectiveness in the management of neuroendocrine neoplasms.

Rev Endocr Metab Disord. 2021-9

[9]
Selective internal radiation therapies for unresectable early-, intermediate- or advanced-stage hepatocellular carcinoma: systematic review, network meta-analysis and economic evaluation.

Health Technol Assess. 2020-9

[10]
The validation of published utility mapping algorithms: an example of EORTC QLQ-C30 and EQ-5D in non-small cell lung cancer.

Health Econ Rev. 2020-4-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索