Suppr超能文献

多准则优化方法在 HDR 前列腺近距离治疗中的应用:I. Pareto 曲面逼近。

A multi-criteria optimization approach for HDR prostate brachytherapy: I. Pareto surface approximation.

机构信息

Department of Physics, Engineering Physics and Optics and Cancer Research Center, Université Laval, Quebec City, QC, G1V 0A6, Canada. Department of Radiation Oncology and Research Center of CHU de Québec-Université Laval, Quebec City, QC, G1R 2J6, Canada.

出版信息

Phys Med Biol. 2018 Oct 16;63(20):205004. doi: 10.1088/1361-6560/aae24c.

Abstract

High dose rate (HDR) brachytherapy planning usually involves an iterative process of refining planning objectives until a clinically acceptable plan is produced. The purpose of this two-part study is to improve current planning practice by designing a novel inverse planning algorithm based on multi-criteria optimization (MCO). In the first part, complete Pareto surfaces were approximated and studied for prostate cases. A Pareto surface approximation algorithm was implemented within the framework of Inverse Planning Simulated Annealing. The Pareto surfaces of 140 prostate cases were approximated with the proposed MCO algorithm. For each case, the Pareto surface was represented by automatically generating 300 Pareto optimal plans, and the clinically acceptable region was identified. Thus, 42 000 Pareto optimal plans were created to characterize Pareto surfaces for all the cases. In addition, the relationship between the clinically acceptable region and four anchor plans was studied. As a result, a set of polynomial regression models was extracted to rapidly predict the clinically acceptable region on the Pareto surface based on anchor plans. Pareto surfaces for HDR brachytherapy prostate cases were well characterized in this study. The proposed regression models may help define the most relevant solution phase space.

摘要

高剂量率 (HDR) 近距离治疗计划通常涉及一个迭代过程,即不断改进计划目标,直到生成一个临床可接受的计划。本研究分为两部分,旨在通过设计基于多准则优化 (MCO) 的新型逆规划算法来改进当前的规划实践。在第一部分中,针对前列腺病例,我们对完整的 Pareto 曲面进行了近似和研究。在逆规划模拟退火的框架内实现了 Pareto 曲面逼近算法。使用提出的 MCO 算法对 140 例前列腺病例的 Pareto 曲面进行了近似。对于每个病例,通过自动生成 300 个 Pareto 最优方案来表示 Pareto 曲面,并确定临床可接受区域。因此,创建了 42000 个 Pareto 最优方案来描述所有病例的 Pareto 曲面。此外,还研究了临床可接受区域与四个锚定方案之间的关系。结果,提取了一组多项式回归模型,以便基于锚定方案快速预测 Pareto 曲面上的临床可接受区域。本研究很好地描述了 HDR 近距离治疗前列腺病例的 Pareto 曲面。所提出的回归模型可能有助于定义最相关的解决方案相空间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验