Suppr超能文献

一种应用于偏振干涉成像光谱仪(PIIS)的视场(FOV)拓宽与热相移(TPD)补偿技术研究

[A Research on Filed-of-View (FOV) Widening and Thermal-Phase-Drift (TPD) Compensating Technology Applied in a Polarized Interference Imaging Spectrometer (PIIS)].

作者信息

Zhai Yang, Xiao Dong, Li Bo, Zhu Ri-hong

出版信息

Guang Pu Xue Yu Guang Pu Fen Xi. 2016 Nov;36(11):3720-5.

Abstract

The Polarized Interference Imaging Spectrometer (PIIS), which is based on the theory of Fourier Transform Spectroscopy, is consisted of a series of birefringent crystals such as polarizers, a beam splitter as well as various lengths of birefringent crystals required to achieve large delays. The PIIS, compared with a traditional grating-based dispersion spectrometer, has various advantages of multiple-channel measurements, simultaneous information acquisition of both original images and fringes containing spectral details, large light flux, better light signal-to-noise ratio (SNR) as well as anti-vibration etc. Therefore, the PIIS has also been developed in a range of astronomy and astrophysics areas such as remote sensing, extrasolar planet radial velocity measurements, spacecraft design, lunar exploration etc. However, by reviewing of former works and references, two major drawbacks still remain in PIIS and need to be fixed. For one thing, the classic PIIS has a very limited field-of-view (FOV) around ±2°, which means the acquired fringes on the image plane will show quite strong non-linear distortion and hence degrade the accuracy of spectral reconstruction via Fourier transform. For another, the random thermal-phase-drift (TPD), given rise from both thermal expansion and birefringence variation caused by the environmental temperature fluctuation, has barely been studied before and will inevitably result in extra radial velocity error based on Doppler Spectroscopy. In this paper, a noble polarization interference imaging spectrometer with the emphasis on the FOV widening technology is introduced. This technology, using a compensated Savart plate containing a half-wave plate sandwiched between two orthogonally placed displacer plates as a compensated Savart plate, produces an angle-dependent phase shear to create parallel spatial interference fringes with a FOV around ±10°. This improvement not only enhances the accuracy of Fourier Transform algorithm but also increases input luminous flux and therefore even weak input spectrum detection and calibration results with high SNR can be fully accomplished. Also, a secondary set of birefringent plates (α-BBO and LiNbO3) with opposite thermal properties is proposed to passively diminish TPD caused by temperature fluctuation. The experiment shows that thermal-drift-phase error is perfectly restricted within 0.02 rad in the laboratory environment. As a consequence, this advanced PIIS is eligible to realize the fast and accurate measurement and calibration application in the field of large astronomical spectral instruments with ultra-high spectral resolution occasions such as Astronomical Frequency Comb.

摘要

基于傅里叶变换光谱理论的偏振干涉成像光谱仪(PIIS)由一系列双折射晶体(如偏振器)、一个分束器以及实现大延迟所需的各种长度的双折射晶体组成。与传统的基于光栅的色散光谱仪相比,PIIS具有多通道测量、同时获取原始图像和包含光谱细节的条纹的信息、光通量高、光信噪比(SNR)好以及抗振动等多种优点。因此,PIIS也已在一系列天文学和天体物理学领域得到发展,如遥感、系外行星径向速度测量、航天器设计、月球探测等。然而,通过回顾以前的工作和参考文献,PIIS仍存在两个主要缺点需要解决。一方面,经典的PIIS在±2°左右的视场(FOV)非常有限,这意味着在像平面上获取的条纹会显示出相当强的非线性失真,从而降低通过傅里叶变换进行光谱重建的精度。另一方面,由环境温度波动引起的热膨胀和双折射变化导致的随机热相位漂移(TPD)以前几乎没有被研究过,并且基于多普勒光谱学不可避免地会导致额外的径向速度误差。本文介绍了一种着重于视场拓宽技术的新型偏振干涉成像光谱仪。该技术使用一种补偿萨伐尔板,它由夹在两个正交放置的位移板之间的一个半波片组成,作为补偿萨伐尔板,产生与角度相关的相位剪切,以创建视场约为±10°的平行空间干涉条纹。这种改进不仅提高了傅里叶变换算法的精度,还增加了输入光通量,因此即使是弱输入光谱检测和高信噪比的校准结果也能完全实现。此外,还提出了一组具有相反热特性的双折射板(α - BBO和LiNbO3),以被动减少由温度波动引起的TPD。实验表明,在实验室环境中热漂移相位误差被完美地限制在0.02弧度以内。因此,这种先进的PIIS有资格在诸如天文频率梳等具有超高光谱分辨率的大型天文光谱仪器领域实现快速准确的测量和校准应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验