Hong Min, Zhou Xiebo, Gao Nan, Jiang Shaolong, Xie Chunyu, Zhao Liyun, Gao Yan, Zhang Zhepeng, Yang Pengfei, Shi Yuping, Zhang Qing, Liu Zhongfan, Zhao Jijun, Zhang Yanfeng
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams , Dalian University of Technology, Ministry of Education , Dalian 116024 , China.
ACS Nano. 2018 Oct 23;12(10):10095-10103. doi: 10.1021/acsnano.8b04872. Epub 2018 Sep 20.
Rhenium diselenide (ReSe) is a unique transition-metal dichalcogenide (TMDC) possessing distorted 1T structure with a triclinic symmetry, strong in-plane anisotropy, and promising applications in optoelectronics and energy-related fields. So far, the structural and physical properties of ReSe are mainly uncovered by transmission electron microscopy and spectroscopy characterizations. Herein, by combining scanning tunneling microscopy and spectroscopy (STM and STS) with first-principles calculations, we accomplish the on-site atomic-scale identification of the top four non-identical Se atoms in a unit cell of the anisotropic monolayer ReSe on the Au substrate. According to STS and photoluminescence results, we also determine the quasiparticle and optical band gaps as well as the exciton binding energy of monolayer ReSe. In particular, we detect a perfect lattice coherence and an invariable band gap across the mirror-symmetric grain boundaries in monolayer and bilayer ReSe, which considerably differ from the traditional isotropic TMDCs featured with defect structures and additional states inside the band gap. Such essential findings should deepen our understanding of the intrinsic properties of two-dimensional anisotropic materials and provide fundamental references for their applications in related fields.
二硒化铼(ReSe₂)是一种独特的过渡金属二硫属化物(TMDC),具有扭曲的1T结构,呈三斜对称,面内各向异性强,在光电子学和能源相关领域有广阔应用前景。到目前为止,ReSe₂的结构和物理性质主要通过透射电子显微镜和光谱表征来揭示。在此,我们将扫描隧道显微镜和光谱(STM和STS)与第一性原理计算相结合,实现了对金衬底上各向异性单层ReSe₂晶胞中前四个不同硒原子的原位原子尺度识别。根据STS和光致发光结果,我们还确定了单层ReSe₂的准粒子和光学带隙以及激子结合能。特别地,我们检测到单层和双层ReSe₂中镜像对称晶界处具有完美的晶格相干性和不变的带隙,这与传统的具有缺陷结构和带隙内额外态的各向同性TMDC有很大不同。这些重要发现将加深我们对二维各向异性材料本征性质的理解,并为其在相关领域的应用提供基础参考。