Kirschner Matthew S, Diroll Benjamin T, Brumberg Alexandra, Leonard Ariel A, Hannah Daniel C, Chen Lin X, Schaller Richard D
Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States.
ACS Nano. 2018 Oct 23;12(10):10008-10015. doi: 10.1021/acsnano.8b04435. Epub 2018 Sep 26.
The optoelectronic properties of semiconductor nanocrystals (NCs) have led to efforts to integrate them as the active material in light-emitting diodes, solid-state lighting, and lasers. Understanding related high carrier injection conditions is therefore critical as resultant thermal effects can impact optical properties. The physical integrity of NCs is indeed questionable as recent transient X-ray diffraction studies have suggested that nanoscopic particles reversibly lose crystalline order, or melt, under high fluence photoexcitation. Informed by such studies, here, we examine CdSe NCs under elevated fluences to determine the impact of lattice disordering on optical properties. To this end, we implement intensity-dependent transient absorption using both one- and two-pump methods where the latter effectively subtracts out the NC optical signatures associated with lower fluence photoexcitation, especially band-edge features. At elevated fluences, we observe a long-lived induced absorption at a lower energy than the crystalline-NC bandgap across a wide range of sizes that follows power-dependent trends and kinetics consistent with the prior transient X-ray measurements. NC photoluminescence studies provide further evidence that melting influences optical properties. These methods of characterizing bandgap narrowing caused by lattice disordering could facilitate routes to improved optical amplification and band-edge emission at high excitation density.
半导体纳米晶体(NCs)的光电特性促使人们努力将其作为发光二极管、固态照明和激光器中的活性材料加以整合。因此,了解相关的高载流子注入条件至关重要,因为由此产生的热效应会影响光学特性。由于最近的瞬态X射线衍射研究表明,纳米颗粒在高能量密度光激发下会可逆地失去晶体有序性或熔化,所以NCs的物理完整性确实存在疑问。受此类研究启发,在此我们研究了高能量密度下的CdSe NCs,以确定晶格无序对光学特性的影响。为此,我们使用单泵浦和双泵浦方法实施强度依赖的瞬态吸收,其中双泵浦方法有效地减去了与较低能量密度光激发相关的NC光学信号,尤其是带边特征。在高能量密度下,我们观察到在比晶体NC带隙更低的能量处出现了一个长寿命的诱导吸收,该吸收在很宽的尺寸范围内呈现出与功率相关的趋势和动力学,这与先前的瞬态X射线测量结果一致。NC光致发光研究进一步证明熔化会影响光学特性。这些表征由晶格无序导致的带隙变窄的方法,可能会为在高激发密度下改善光学放大和带边发射提供途径。