Leonard Ariel A, Diroll Benjamin T, Flanders Nathan C, Panuganti Shobhana, Brumberg Alexandra, Kirschner Matthew S, Cuthriell Shelby A, Harvey Samantha M, Watkins Nicolas E, Yu Jin, Wasielewski Michael R, Kanatzidis Mercouri G, Dichtel William R, Zhang Xiaoyi, Chen Lin X, Schaller Richard D
Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.
Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States.
ACS Nano. 2023 Mar 28;17(6):5306-5315. doi: 10.1021/acsnano.2c06950. Epub 2023 Mar 14.
Methylammonium lead iodide (MAPbI) perovskite nanocrystals (NCs) offer desirable optoelectronic properties with prospective utility in photovoltaics, lasers, and light-emitting diodes (LEDs). Structural rearrangements of MAPbI in response to photoexcitation, such as lattice distortions and phase transitions, are of particular interest, as these engender long carrier lifetime and bolster carrier diffusion. Here, we use variable temperature X-ray diffraction (XRD) and synchrotron-based transient X-ray diffraction (TRXRD) to investigate lattice response following ultrafast optical excitation. MAPbI NCs are found to slowly undergo a phase transition from the tetragonal to a pseudocubic phase over the course of 1 ns under 0.02-4.18 mJ/cm fluence photoexcitation, with apparent nonthermal lattice distortions attributed to polaron formation. Lattice recovery exceeds time scales expected for both carrier recombination and thermal dissipation, indicating meta-stability likely due to the proximal phase transition, with symmetry-breaking along equatorial and axial directions. These findings are relevant for fundamental understanding and applications of structure-function properties.
甲基碘化铅(MAPbI)钙钛矿纳米晶体(NCs)具有理想的光电特性,在光伏、激光和发光二极管(LED)领域具有潜在应用价值。MAPbI响应光激发的结构重排,如晶格畸变和相变,尤其令人关注,因为这些会产生较长的载流子寿命并促进载流子扩散。在此,我们使用变温X射线衍射(XRD)和基于同步加速器的瞬态X射线衍射(TRXRD)来研究超快光激发后的晶格响应。发现在0.02 - 4.18 mJ/cm²能量密度的光激发下,MAPbI纳米晶体在1 ns的过程中会缓慢地从四方相转变为伪立方相,明显的非热晶格畸变归因于极化子的形成。晶格恢复超过了载流子复合和热耗散预期的时间尺度,表明可能由于近端相变导致的亚稳性,伴随着赤道和轴向的对称性破缺。这些发现对于结构 - 功能特性的基础理解和应用具有重要意义。