Suppr超能文献

Hsp70 的 C 端 GGAP 基序介导酵母中的底物识别和应激反应。

The C-terminal GGAP motif of Hsp70 mediates substrate recognition and stress response in yeast.

机构信息

From the National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.

From the National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China.

出版信息

J Biol Chem. 2018 Nov 16;293(46):17663-17675. doi: 10.1074/jbc.RA118.002691. Epub 2018 Sep 18.

Abstract

The allosteric coupling of the highly conserved nucleotide- and substrate-binding domains of Hsp70 has been studied intensively. In contrast, the role of the disordered, highly variable C-terminal region of Hsp70 remains unclear. In many eukaryotic Hsp70s, the extreme C-terminal EEVD motif binds to the tetratricopeptide-repeat domains of Hsp70 co-chaperones. Here, we discovered that the TVEEVD sequence of cytoplasmic Hsp70 (Ssa1) functions as a SUMO-interacting motif. A second C-terminal motif of ∼15 amino acids between the α-helical lid and the extreme C terminus, previously identified in bacterial and eukaryotic organellar Hsp70s, is known to enhance chaperone function by transiently interacting with folding clients. Using structural analysis, interaction studies, fibril formation assays, and functional assays, we investigated the individual contributions of the α-helical bundle and the C-terminal disordered region of Ssa1 in the inhibition of fibril formation of the prion protein Ure2. Our results revealed that although the α-helical bundle of the Ssa1 substrate-binding domain (SBDα) does not directly bind to Ure2, the SBDα enhances the ability of Hsp70 to inhibit fibril formation. We found that a 20-residue C-terminal motif in Ssa1, containing GGAP and GGAP-like tetrapeptide repeats, can directly bind to Ure2, the Hsp40 co-chaperone Ydj1, and α-synuclein, but not to the SUMO-like protein SMT3 or BSA. Deletion or substitution of the Ssa1 GGAP motif impaired yeast cell tolerance to temperature and cell-wall damage stress. This study highlights that the C-terminal GGAP motif of Hsp70 is important for substrate recognition and mediation of the heat shock response.

摘要

高度保守的核苷酸和底物结合域的变构偶联在 Hsp70 中已被深入研究。相比之下,Hsp70 无规则、高度可变的 C 端区域的作用仍不清楚。在许多真核 Hsp70 中,极端 C 端 EEVD 基序与 Hsp70 共伴侣的四肽重复结构域结合。在这里,我们发现细胞质 Hsp70(Ssa1)的 TVEEVD 序列作为 SUMO 相互作用基序。以前在细菌和真核细胞器 Hsp70 中发现的位于 α-螺旋盖和极端 C 端之间的约 15 个氨基酸的第二个 C 端基序,已知通过与折叠的客户短暂相互作用来增强伴侣的功能。使用结构分析、相互作用研究、纤维形成测定和功能测定,我们研究了 Ssa1 的α-螺旋束和 C 端无规区在抑制 Ure2 朊病毒蛋白纤维形成中的个体贡献。我们的结果表明,尽管 Ssa1 的底物结合域(SBDα)的α-螺旋束不直接与 Ure2 结合,但 SBDα增强了 Hsp70 抑制纤维形成的能力。我们发现,Ssa1 中包含 GGAP 和 GGAP 样四肽重复的 20 个残基 C 端基序,可以直接与 Ure2、Hsp40 共伴侣 Ydj1 和α-突触核蛋白结合,但不能与 SUMO 样蛋白 SMT3 或 BSA 结合。Ssa1 GGAP 基序的缺失或取代会损害酵母细胞对温度和细胞壁损伤应激的耐受性。本研究强调了 Hsp70 的 C 端 GGAP 基序在底物识别和介导热休克反应中的重要性。

相似文献

1
The C-terminal GGAP motif of Hsp70 mediates substrate recognition and stress response in yeast.
J Biol Chem. 2018 Nov 16;293(46):17663-17675. doi: 10.1074/jbc.RA118.002691. Epub 2018 Sep 18.
3
Influence of specific HSP70 domains on fibril formation of the yeast prion protein Ure2.
Philos Trans R Soc Lond B Biol Sci. 2013 Mar 25;368(1617):20110410. doi: 10.1098/rstb.2011.0410. Print 2013 May 5.
4
Regulation of the Hsf1-dependent transcriptome via conserved bipartite contacts with Hsp70 promotes survival in yeast.
J Biol Chem. 2019 Aug 9;294(32):12191-12202. doi: 10.1074/jbc.RA119.008822. Epub 2019 Jun 25.
5
Crystal structure of yeast Sis1 peptide-binding fragment and Hsp70 Ssa1 C-terminal complex.
Biochem J. 2006 Sep 15;398(3):353-60. doi: 10.1042/BJ20060618.
6
Roles of intramolecular and intermolecular interactions in functional regulation of the Hsp70 J-protein co-chaperone Sis1.
J Mol Biol. 2015 Apr 10;427(7):1632-43. doi: 10.1016/j.jmb.2015.02.007. Epub 2015 Feb 14.
7
Resonance assignments for the substrate binding domain of Hsp70 chaperone Ssa1 from Saccharomyces cerevisiae.
Biomol NMR Assign. 2015 Oct;9(2):329-32. doi: 10.1007/s12104-015-9603-5. Epub 2015 Feb 15.
8
Hsp40 interacts directly with the native state of the yeast prion protein Ure2 and inhibits formation of amyloid-like fibrils.
J Biol Chem. 2007 Apr 20;282(16):11931-40. doi: 10.1074/jbc.M606856200. Epub 2007 Feb 26.
9
Propagation of Saccharomyces cerevisiae [PSI+] prion is impaired by factors that regulate Hsp70 substrate binding.
Mol Cell Biol. 2004 May;24(9):3928-37. doi: 10.1128/MCB.24.9.3928-3937.2004.
10
Deletion of a Ure2 C-terminal prion-inhibiting region promotes the rate of fibril seed formation and alters interaction with Hsp40.
Protein Eng Des Sel. 2011 Jan;24(1-2):69-78. doi: 10.1093/protein/gzq100. Epub 2010 Nov 12.

引用本文的文献

1
Effect of evolution of the C-terminal region on chaperone activity of Hsp70.
Protein Sci. 2023 Jan;32(1):e4549. doi: 10.1002/pro.4549.
2
Insights into the client protein release mechanism of the ATP-independent chaperone Spy.
Nat Commun. 2022 May 20;13(1):2818. doi: 10.1038/s41467-022-30499-x.
3
The C-terminal domain of Hsp70 is responsible for paralog-specific regulation of ribonucleotide reductase.
PLoS Genet. 2022 Apr 13;18(4):e1010079. doi: 10.1371/journal.pgen.1010079. eCollection 2022 Apr.
5
Hsp70 in Redox Homeostasis.
Cells. 2022 Feb 28;11(5):829. doi: 10.3390/cells11050829.
6
Differential Interactions of Molecular Chaperones and Yeast Prions.
J Fungi (Basel). 2022 Jan 27;8(2):122. doi: 10.3390/jof8020122.
7
SUMO Interacting Motifs: Structure and Function.
Cells. 2021 Oct 21;10(11):2825. doi: 10.3390/cells10112825.
8
The Role of Hsp70s in the Development and Pathogenicity of Plasmodium falciparum.
Adv Exp Med Biol. 2021;1340:75-95. doi: 10.1007/978-3-030-78397-6_3.
9
Structural basis for the DNA-binding activity of human ARID4B Tudor domain.
J Biol Chem. 2021 Jan-Jun;296:100506. doi: 10.1016/j.jbc.2021.100506. Epub 2021 Mar 4.

本文引用的文献

1
The β6/β7 region of the Hsp70 substrate-binding domain mediates heat-shock response and prion propagation.
Cell Mol Life Sci. 2018 Apr;75(8):1445-1459. doi: 10.1007/s00018-017-2698-3. Epub 2017 Nov 9.
2
Stress-Triggered Phase Separation Is an Adaptive, Evolutionarily Tuned Response.
Cell. 2017 Mar 9;168(6):1028-1040.e19. doi: 10.1016/j.cell.2017.02.027.
3
Dynamical Structures of Hsp70 and Hsp70-Hsp40 Complexes.
Structure. 2016 Jul 6;24(7):1014-30. doi: 10.1016/j.str.2016.05.011. Epub 2016 Jun 23.
4
Glutathionylation of the Bacterial Hsp70 Chaperone DnaK Provides a Link between Oxidative Stress and the Heat Shock Response.
J Biol Chem. 2016 Mar 25;291(13):6967-81. doi: 10.1074/jbc.M115.673608. Epub 2016 Jan 28.
5
Insights into the molecular mechanism of allostery in Hsp70s.
Front Mol Biosci. 2015 Oct 20;2:58. doi: 10.3389/fmolb.2015.00058. eCollection 2015.
6
Functionality of Class A and Class B J-protein co-chaperones with Hsp70.
FEBS Lett. 2015 Sep 14;589(19 Pt B):2825-30. doi: 10.1016/j.febslet.2015.07.040. Epub 2015 Aug 3.
8
Roles of intramolecular and intermolecular interactions in functional regulation of the Hsp70 J-protein co-chaperone Sis1.
J Mol Biol. 2015 Apr 10;427(7):1632-43. doi: 10.1016/j.jmb.2015.02.007. Epub 2015 Feb 14.
9
How hsp70 molecular machines interact with their substrates to mediate diverse physiological functions.
J Mol Biol. 2015 Apr 10;427(7):1575-88. doi: 10.1016/j.jmb.2015.02.004. Epub 2015 Feb 12.
10
Resonance assignments for the substrate binding domain of Hsp70 chaperone Ssa1 from Saccharomyces cerevisiae.
Biomol NMR Assign. 2015 Oct;9(2):329-32. doi: 10.1007/s12104-015-9603-5. Epub 2015 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验