Suppr超能文献

皮层-皮层下网络中听觉预测加工的低频振荡相关性:一项 MEG 研究。

Low-Frequency Oscillatory Correlates of Auditory Predictive Processing in Cortical-Subcortical Networks: A MEG-Study.

机构信息

Institute of Neuroscience and Psychology, University of Glasgow, 58 Hillhead Street, Glasgow, G12 8QB, Scotland, United Kingdom.

Institute of Biomagnetism and Biosignalanalysis, University of Muenster, Malmedyweg 15, 48149, Muenster, Germany.

出版信息

Sci Rep. 2018 Sep 18;8(1):14007. doi: 10.1038/s41598-018-32385-3.

Abstract

Emerging evidence supports the role of neural oscillations as a mechanism for predictive information processing across large-scale networks. However, the oscillatory signatures underlying auditory mismatch detection and information flow between brain regions remain unclear. To address this issue, we examined the contribution of oscillatory activity at theta/alpha-bands (4-8/8-13 Hz) and assessed directed connectivity in magnetoencephalographic data while 17 human participants were presented with sound sequences containing predictable repetitions and order manipulations that elicited prediction-error responses. We characterized the spectro-temporal properties of neural generators using a minimum-norm approach and assessed directed connectivity using Granger Causality analysis. Mismatching sequences elicited increased theta power and phase-locking in auditory, hippocampal and prefrontal cortices, suggesting that theta-band oscillations underlie prediction-error generation in cortical-subcortical networks. Furthermore, enhanced feedforward theta/alpha-band connectivity was observed in auditory-prefrontal networks during mismatching sequences, while increased feedback connectivity in the alpha-band was observed between hippocampus and auditory regions during predictable sounds. Our findings highlight the involvement of hippocampal theta/alpha-band oscillations towards auditory prediction-error generation and suggest a spectral dissociation between inter-areal feedforward vs. feedback signalling, thus providing novel insights into the oscillatory mechanisms underlying auditory predictive processing.

摘要

新出现的证据支持神经振荡作为跨大规模网络进行预测信息处理的机制。然而,听觉不匹配检测和脑区之间信息流的振荡特征尚不清楚。为了解决这个问题,我们研究了在θ/α频段(4-8/8-13 Hz)的振荡活动的贡献,并评估了磁源性脑电图数据中的定向连通性,同时 17 名人类参与者被呈现包含可预测重复和顺序操作的声音序列,这些序列会引起预测误差反应。我们使用最小范数方法描述了神经发生器的谱时特性,并使用格兰杰因果分析评估了定向连通性。不匹配序列引起听觉、海马体和前额叶皮质中θ功率和相位锁定增加,表明θ频段振荡是皮质下网络中预测误差产生的基础。此外,在不匹配序列期间观察到听觉-前额叶网络中增强的前馈θ/α频带连通性,而在可预测声音期间观察到海马体和听觉区域之间的α频带中增强的反馈连通性。我们的发现强调了海马体θ/α频段振荡对听觉预测误差产生的参与,并表明在区域间前馈与反馈信号之间存在频谱分离,从而为听觉预测处理的振荡机制提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e28b/6143554/98b16ea3e360/41598_2018_32385_Fig1_HTML.jpg

相似文献

5
The role of brain oscillations in predicting self-generated sounds.
Neuroimage. 2017 Feb 15;147:895-903. doi: 10.1016/j.neuroimage.2016.11.001. Epub 2016 Nov 3.
6
Spectral and phase-coherence correlates of impaired auditory mismatch negativity (MMN) in schizophrenia: A MEG study.
Schizophr Res. 2023 Nov;261:60-71. doi: 10.1016/j.schres.2023.08.033. Epub 2023 Sep 12.
7
Cortico-pallidal oscillatory connectivity in patients with dystonia.
Brain. 2015 Jul;138(Pt 7):1894-906. doi: 10.1093/brain/awv109. Epub 2015 May 1.
8
MEG Intersubject Phase Locking of Stimulus-Driven Activity during Naturalistic Speech Listening Correlates with Musical Training.
J Neurosci. 2021 Mar 24;41(12):2713-2722. doi: 10.1523/JNEUROSCI.0932-20.2020. Epub 2021 Feb 3.
9
Sound-Making Actions Lead to Immediate Plastic Changes of Neuromagnetic Evoked Responses and Induced β-Band Oscillations during Perception.
J Neurosci. 2017 Jun 14;37(24):5948-5959. doi: 10.1523/JNEUROSCI.3613-16.2017. Epub 2017 May 24.
10
Theta oscillation during auditory change detection: An MEG study.
Biol Psychol. 2009 Apr;81(1):58-66. doi: 10.1016/j.biopsycho.2009.01.007. Epub 2009 Feb 7.

引用本文的文献

1
Oscillatory brain indexes of auditory-induced predictions about contingences during vocalizations.
Exp Brain Res. 2025 Jul 12;243(8):187. doi: 10.1007/s00221-025-07130-8.
3
Predictable and unpredictable deviance detection in the human hippocampus and amygdala.
Cereb Cortex. 2024 Jan 31;34(2). doi: 10.1093/cercor/bhad532.
5
Age-related changes of deep-brain neurophysiological activity.
Cereb Cortex. 2023 Mar 21;33(7):3960-3968. doi: 10.1093/cercor/bhac319.
6
The hearing hippocampus.
Prog Neurobiol. 2022 Nov;218:102326. doi: 10.1016/j.pneurobio.2022.102326. Epub 2022 Jul 21.
7
Can EEG Correlates Predict Treatment Efficacy in Children with Overlapping ASD and SLI Symptoms: A Case Report.
Diagnostics (Basel). 2022 Apr 28;12(5):1110. doi: 10.3390/diagnostics12051110.
8
9
Violation of rhythmic expectancies can elicit late frontal gamma activity nested in theta oscillations.
Psychophysiology. 2021 Nov;58(11):e13909. doi: 10.1111/psyp.13909. Epub 2021 Jul 26.
10
Prospects for Future Methodological Development and Application of Magnetoencephalography Devices in Psychiatry.
Front Psychiatry. 2020 Aug 21;11:863. doi: 10.3389/fpsyt.2020.00863. eCollection 2020.

本文引用的文献

1
Mapping of a non-spatial dimension by the hippocampal-entorhinal circuit.
Nature. 2017 Mar 29;543(7647):719-722. doi: 10.1038/nature21692.
2
Neural mechanisms of mismatch negativity dysfunction in schizophrenia.
Mol Psychiatry. 2017 Nov;22(11):1585-1593. doi: 10.1038/mp.2017.3. Epub 2017 Feb 7.
3
Using generative models to make probabilistic statements about hippocampal engagement in MEG.
Neuroimage. 2017 Apr 1;149:468-482. doi: 10.1016/j.neuroimage.2017.01.029. Epub 2017 Jan 25.
4
Episodic sequence memory is supported by a theta-gamma phase code.
Nat Neurosci. 2016 Oct;19(10):1374-80. doi: 10.1038/nn.4374. Epub 2016 Aug 29.
5
A Tutorial Review of Functional Connectivity Analysis Methods and Their Interpretational Pitfalls.
Front Syst Neurosci. 2016 Jan 8;9:175. doi: 10.3389/fnsys.2015.00175. eCollection 2015.
7
Rhythms for Cognition: Communication through Coherence.
Neuron. 2015 Oct 7;88(1):220-35. doi: 10.1016/j.neuron.2015.09.034.
8
Ventromedial prefrontal cortex drives hippocampal theta oscillations induced by mismatch computations.
Neuroimage. 2015 Oct 15;120:362-70. doi: 10.1016/j.neuroimage.2015.07.016. Epub 2015 Jul 14.
9
Prediction strength modulates responses in human area CA1 to sequence violations.
J Neurophysiol. 2015 Aug;114(2):1227-38. doi: 10.1152/jn.00149.2015. Epub 2015 Jun 10.
10
Oscillatory mechanisms of feedforward and feedback visual processing.
Trends Neurosci. 2015 Apr;38(4):192-4. doi: 10.1016/j.tins.2015.02.006. Epub 2015 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验