School of Physics and Technology, University of Jinan, Jinan, Shandong 250022, People's Republic of China.
Phys Chem Chem Phys. 2018 Oct 3;20(38):24790-24795. doi: 10.1039/c8cp02649a.
Topological insulating material with dissipationless edge states is a rising star in spintronics. While most two-dimensional (2D) topological insulators belong to group-IV or -V elements in a honeycomb lattice, herein, we propose a new topological phase in the 2D hexagonal group-III crystal, h-Tl, based on a tight-binding model and density-functional theory calculation. Analysis of band dispersion reveals a Dirac nodal-ring near the Fermi level, which is attributed to px,y/pz band crossing. Upon inclusion of spin-orbit coupling (SOC), h-Tl turns into a quantum spin Hall insulator under 21% biaxial strain, confirmed by integrating spin Berry curvature in the Brillouin zone and spin-polarized edge states. A prominent feature of its electronic properties is that the effect of SOC plays two essential roles of both topological gap opening and band inversion between px,y/pz orbitals, which is the first observed phenomenon in 2D materials. This study extends the scope of 2D elemental topological insulators and presents a platform to design new 2D topotronics materials.
具有无耗散边缘态的拓扑绝缘材料是自旋电子学的一颗新星。虽然大多数二维(2D)拓扑绝缘体属于蜂窝晶格中的 IV 族或 V 族元素,但本文基于紧束缚模型和密度泛函理论计算,提出了一种二维六方 III 族晶体 h-Tl 的新拓扑相。能带色散分析表明,费米能级附近存在一个狄拉克节环,这归因于 px,y/pz 能带交叉。当包括自旋轨道耦合(SOC)时,在 21%双轴应变下,h-Tl 转变为量子自旋霍尔绝缘体,这通过在布里渊区中积分自旋Berry 曲率和自旋极化边缘态得到证实。其电子性质的一个显著特征是,SOC 的作用在拓扑带隙的打开和 px,y/pz 轨道之间的能带反转中起着两个重要作用,这是在二维材料中首次观察到的现象。本研究扩展了二维元素拓扑绝缘体的范围,并为设计新型二维拓扑电子材料提供了一个平台。