Suppr超能文献

颈动脉壁的超声图像序列的运动跟踪:一种非线性状态空间方法。

Motion Tracking of the Carotid Artery Wall From Ultrasound Image Sequences: a Nonlinear State-Space Approach.

出版信息

IEEE Trans Med Imaging. 2018 Jan;37(1):273-283. doi: 10.1109/TMI.2017.2746879. Epub 2017 Aug 30.

Abstract

The motion of the common carotid artery (CCA) wall has been established to be useful in early diagnosis of atherosclerotic disease. However, tracking the CCA wall motion from ultrasound images remains a challenging task. In this paper, a nonlinear state-space approach has been developed to track CCA wall motion from ultrasound sequences. In this approach, a nonlinear state-space equation with a time-variant control signal was constructed from a mathematical model of the dynamics of the CCA wall. Then, the unscented Kalman filter (UKF) was adopted to solve the nonlinear state transfer function in order to evolve the state of the target tissue, which involves estimation of the motion trajectory of the CCA wall from noisy ultrasound images. The performance of this approach has been validated on 30 simulated ultrasound sequences and a real ultrasound dataset of 103 subjects by comparing the motion tracking results obtained in this study to those of three state-of-the-art methods and of the manual tracing method performed by two experienced ultrasound physicians. The experimental results demonstrated that the proposed approach is highly correlated with (intra-class correlation coefficient ≥ 0.9948 for the longitudinal motion and ≥ 0.9966 for the radial motion) and well agrees (the 95% confidence interval width is 0.8871 mm for the longitudinal motion and 0.4159 mm for the radial motion) with the manual tracing method on real data and also exhibits high accuracy on simulated data (0.1161 ~ 0.1260 mm). These results appear to demonstrate the effectiveness of the proposed approach for motion tracking of the CCA wall.

摘要

颈总动脉(CCA)壁的运动已被证明在动脉粥样硬化疾病的早期诊断中具有重要作用。然而,从超声图像中跟踪 CCA 壁的运动仍然是一项具有挑战性的任务。在本文中,提出了一种非线性状态空间方法来从超声序列中跟踪 CCA 壁的运动。在该方法中,从 CCA 壁动力学的数学模型构建了一个带有时变控制信号的非线性状态空间方程。然后,采用无迹卡尔曼滤波器(UKF)来求解非线性状态传递函数,以演化目标组织的状态,这涉及从噪声超声图像估计 CCA 壁的运动轨迹。通过将本研究获得的运动跟踪结果与三种最先进的方法和两名经验丰富的超声医生进行的手动跟踪方法进行比较,在 30 个模拟超声序列和 103 个受试者的真实超声数据集上验证了该方法的性能。实验结果表明,该方法与手动跟踪方法高度相关(纵向运动的组内相关系数≥0.9948,径向运动的组内相关系数≥0.9966),并且在真实数据上与手动跟踪方法吻合较好(纵向运动的 95%置信区间宽度为 0.8871mm,径向运动的 95%置信区间宽度为 0.4159mm),在模拟数据上也表现出很高的准确性(0.1161~0.1260mm)。这些结果似乎表明了该方法在 CCA 壁运动跟踪中的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验