a Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section , University of Oklahoma Health Sciences Center (OUHSC) , Oklahoma City , OK , USA.
b Stephenson Cancer Center, Department of Medicine, Hematology/Oncology Section , University of Oklahoma Health Sciences Center (OUHSC) , Oklahoma City , OK , USA.
Cell Cycle. 2018;17(19-20):2321-2334. doi: 10.1080/15384101.2018.1515554. Epub 2018 Sep 20.
From early-onset Alzheimer's disease (EOAD) studies, the amyloid-beta hypothesis emerged as the foremost theory of the pathological causes of AD. However, how amyloid-beta accumulation is triggered and progresses toward senile plaques in spontaneous late-onset Alzheimer's disease (LOAD) in humans remains unanswered. Various LOAD facilitators have been proposed, and LOAD is currently considered a complex disease with multiple causes. Mice do not normally develop LOAD. Possibly due to the multiple causes, proposed LOAD facilitators have not been able to replicate spontaneous LOAD in mice, representing a disease modeling issue. Recently, we reported spontaneous late-onset development of amyloid-beta accumulation in brains of Shugoshin 1 (Sgo1) haploinsufficient mice, a cohesinopathy-mediated chromosome instability model. The result for the first time expands disease relevance of mitosis studies to a major disease other than cancers. Reverse-engineering of the model would shed light on the process of late-onset amyloid-beta accumulation in the brain and spontaneous LOAD development, and contribute to development of interventions for LOAD. This review will discuss the Sgo1 model, our current "three-hit hypothesis" regarding LOAD development with an emphasis on critical role of prolonged mitosis in amyloid-beta accumulation, and implications for human LOAD intervention and treatment. Abbreviations: Alzheimer's disease (AD); Late-onset Alzheimer's disease (LOAD); Early-onset Alzheimer's disease (EOAD); Shugoshin-1 (Sgo1); Chromosome Instability (CIN); apolipoprotein (Apoe); Central nervous system (CNS); Amyloid precursor protein (APP); N-methyl-d-aspartate (NMDA); Hazard ratio (HR); Cyclin-dependent kinase (CDK); Chronic Atrial Intestinal Dysrhythmia (CAID); beta-secretase 1 (BACE); phosphor-Histone H3 (p-H3); Research and development (R&D); Non-steroidal anti-inflammatory drugs (NSAIDs); Brain blood barrier (BBB).
从早发性阿尔茨海默病(EOAD)研究中,β-淀粉样蛋白假说成为 AD 病理原因的首要理论。然而,在人类自发性晚发性阿尔茨海默病(LOAD)中,β-淀粉样蛋白的积累是如何被触发并发展为老年斑的,目前仍未得到解答。各种 LOAD 促进剂已经被提出,LOAD 目前被认为是一种具有多种病因的复杂疾病。老鼠通常不会患上 LOAD。可能由于多种病因,提出的 LOAD 促进剂未能在老鼠中复制自发性 LOAD,这代表了疾病建模的问题。最近,我们报告了 Shugoshin 1(Sgo1)单倍不足小鼠大脑中自发性晚发性β-淀粉样蛋白积累的发展,这是一种黏连蛋白病介导的染色体不稳定性模型。该结果首次将有丝分裂研究的疾病相关性扩展到癌症以外的主要疾病。该模型的反向工程将有助于揭示大脑中晚发性β-淀粉样蛋白积累和自发性 LOAD 发展的过程,并为 LOAD 的干预措施的发展做出贡献。这篇综述将讨论 Sgo1 模型,以及我们目前关于 LOAD 发展的“三击假说”,重点讨论有丝分裂延长在β-淀粉样蛋白积累中的关键作用,以及对人类 LOAD 干预和治疗的意义。缩写词:阿尔茨海默病(AD);晚发性阿尔茨海默病(LOAD);早发性阿尔茨海默病(EOAD);Shugoshin-1(Sgo1);染色体不稳定性(CIN);载脂蛋白(Apoe);中枢神经系统(CNS);淀粉样前体蛋白(APP);N-甲基-D-天冬氨酸(NMDA);风险比(HR);细胞周期蛋白依赖性激酶(CDK);慢性心房肠节律紊乱(CAID);β-分泌酶 1(BACE);磷酸化组蛋白 H3(p-H3);研究与开发(R&D);非甾体抗炎药(NSAIDs);血脑屏障(BBB)。