Suppr超能文献

运动与行为生态学:描述动物接触的饱和三分网络。

The ecology of movement and behaviour: a saturated tripartite network for describing animal contacts.

机构信息

Department of Wildland Resources, Utah State University, Logan, UT, USA

Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA.

出版信息

Proc Biol Sci. 2018 Sep 19;285(1887):20180670. doi: 10.1098/rspb.2018.0670.

Abstract

Ecologists regularly use animal contact networks to describe interactions underlying pathogen transmission, gene flow, and information transfer. However, empirical descriptions of contact often overlook some features of individual movement, and decisions about what kind of network to use in a particular setting are commonly Here, we relate individual movement trajectories to contact networks through a tripartite network model of individual, space, and time nodes. Most networks used in animal contact studies (e.g. individual association networks, home range overlap networks, and spatial networks) are simplifications of this tripartite model. The tripartite structure can incorporate a broad suite of alternative ecological metrics like home range sizes and patch occupancy patterns into inferences about contact network metrics such as modularity and degree distribution. We demonstrate the model's utility with two simulation studies using alternative forms of ecological data to constrain the tripartite network's structure and inform expectations about the harder-to-measure metrics related to contact.

摘要

生态学家经常使用动物接触网络来描述病原体传播、基因流动和信息传递的基础相互作用。然而,对接触的经验描述往往忽略了个体运动的一些特征,而且关于在特定环境中使用哪种网络的决策通常是基于对网络结构的假设。在这里,我们通过个体、空间和时间节点的三分网络模型将个体运动轨迹与接触网络联系起来。动物接触研究中使用的大多数网络(例如个体关联网络、活动范围重叠网络和空间网络)都是这种三分模型的简化。三分结构可以将一系列广泛的替代生态指标(如活动范围大小和斑块占有模式)纳入对接触网络指标(如模块性和度分布)的推断中。我们使用两种模拟研究来演示该模型的实用性,这些研究使用替代形式的生态数据来约束三分网络的结构,并为更难测量的与接触相关的指标提供信息。

相似文献

1
The ecology of movement and behaviour: a saturated tripartite network for describing animal contacts.
Proc Biol Sci. 2018 Sep 19;285(1887):20180670. doi: 10.1098/rspb.2018.0670.
3
Trade-offs with telemetry-derived contact networks for infectious disease studies in wildlife.
Methods Ecol Evol. 2021 Jan;12(1):76-87. doi: 10.1111/2041-210x.13355. Epub 2020 Jan 23.
4
A camera-based method for estimating absolute density in animals displaying home range behaviour.
J Anim Ecol. 2018 May;87(3):825-837. doi: 10.1111/1365-2656.12787. Epub 2018 Jan 22.
5
Emerging Network-Based Tools in Movement Ecology.
Trends Ecol Evol. 2016 Apr;31(4):301-314. doi: 10.1016/j.tree.2016.01.011. Epub 2016 Feb 12.
6
Linking social and pathogen transmission networks using microbial genetics in giraffe (Giraffa camelopardalis).
J Anim Ecol. 2014 Mar;83(2):406-14. doi: 10.1111/1365-2656.12137. Epub 2013 Oct 1.
8
A mechanistic, stigmergy model of territory formation in solitary animals: Territorial behavior can dampen disease prevalence but increase persistence.
PLoS Comput Biol. 2020 Jun 11;16(6):e1007457. doi: 10.1371/journal.pcbi.1007457. eCollection 2020 Jun.
9
Individual and spatio-temporal variations in the home range behaviour of a long-lived, territorial species.
Oecologia. 2013 Jun;172(2):371-85. doi: 10.1007/s00442-012-2493-7. Epub 2012 Oct 20.
10
Evaluating empirical contact networks as potential transmission pathways for infectious diseases.
J R Soc Interface. 2016 Aug;13(121). doi: 10.1098/rsif.2016.0166.

引用本文的文献

3
Comparing transmission potential networks based on social network surveys, close contacts and environmental overlap in rural Madagascar.
J R Soc Interface. 2022 Jan;19(186):20210690. doi: 10.1098/rsif.2021.0690. Epub 2022 Jan 12.
5
Social structure defines spatial transmission of African swine fever in wild boar.
J R Soc Interface. 2021 Jan;18(174):20200761. doi: 10.1098/rsif.2020.0761. Epub 2021 Jan 20.
6
Negative density-dependent parasitism in a group-living carnivore.
Proc Biol Sci. 2020 Dec 23;287(1941):20202655. doi: 10.1098/rspb.2020.2655. Epub 2020 Dec 16.
7
Distribution of Node Characteristics in Evolving Tripartite Network.
Entropy (Basel). 2020 Feb 25;22(3):263. doi: 10.3390/e22030263.
8
Behavioural ecology and infectious disease: implications for conservation of biodiversity.
Philos Trans R Soc Lond B Biol Sci. 2019 Sep 16;374(1781):20180054. doi: 10.1098/rstb.2018.0054. Epub 2019 Jul 29.

本文引用的文献

1
Sampling of temporal networks: Methods and biases.
Phys Rev E. 2017 Nov;96(5-1):052302. doi: 10.1103/PhysRevE.96.052302. Epub 2017 Nov 1.
2
A guide to null models for animal social network analysis.
Methods Ecol Evol. 2017 Oct;8(10):1309-1320. doi: 10.1111/2041-210X.12772. Epub 2017 Apr 12.
3
Measuring site fidelity and spatial segregation within animal societies.
Methods Ecol Evol. 2017 Aug;8(8):965-975. doi: 10.1111/2041-210X.12751. Epub 2017 Mar 20.
4
Estimating the epidemic risk using non-uniformly sampled contact data.
Sci Rep. 2017 Aug 30;7(1):9975. doi: 10.1038/s41598-017-10340-y.
5
The impact of architecture on collective behaviour.
Nat Ecol Evol. 2017 Mar 27;1(5):111. doi: 10.1038/s41559-017-0111.
6
Factors contributing to non-randomness in species Co-occurrences on Islands.
Oecologia. 1982 Jan;52(1):75-84. doi: 10.1007/BF00349014.
9
Consistent individual differences in the social phenotypes of wild great tits, .
Anim Behav. 2015 Oct;108:117-127. doi: 10.1016/j.anbehav.2015.07.016.
10
Beyond contact-based transmission networks: the role of spatial coincidence.
J R Soc Interface. 2015 Oct 6;12(111):20150705. doi: 10.1098/rsif.2015.0705.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验