Suppr超能文献

运用网络理论分析动物运动识别景观空间利用属性。

Applying network theory to animal movements to identify properties of landscape space use.

机构信息

Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, 80523, USA.

Save the Elephants, Nairobi, Kenya.

出版信息

Ecol Appl. 2018 Apr;28(3):854-864. doi: 10.1002/eap.1697.

Abstract

Network (graph) theory is a popular analytical framework to characterize the structure and dynamics among discrete objects and is particularly effective at identifying critical hubs and patterns of connectivity. The identification of such attributes is a fundamental objective of animal movement research, yet network theory has rarely been applied directly to animal relocation data. We develop an approach that allows the analysis of movement data using network theory by defining occupied pixels as nodes and connection among these pixels as edges. We first quantify node-level (local) metrics and graph-level (system) metrics on simulated movement trajectories to assess the ability of these metrics to pull out known properties in movement paths. We then apply our framework to empirical data from African elephants (Loxodonta africana), giant Galapagos tortoises (Chelonoidis spp.), and mule deer (Odocoileous hemionus). Our results indicate that certain node-level metrics, namely degree, weight, and betweenness, perform well in capturing local patterns of space use, such as the definition of core areas and paths used for inter-patch movement. These metrics were generally applicable across data sets, indicating their robustness to assumptions structuring analysis or strategies of movement. Other metrics capture local patterns effectively, but were sensitive to specified graph properties, indicating case specific applications. Our analysis indicates that graph-level metrics are unlikely to outperform other approaches for the categorization of general movement strategies (central place foraging, migration, nomadism). By identifying critical nodes, our approach provides a robust quantitative framework to identify local properties of space use that can be used to evaluate the effect of the loss of specific nodes on range wide connectivity. Our network approach is intuitive, and can be implemented across imperfectly sampled or large-scale data sets efficiently, providing a framework for conservationists to analyze movement data. Functions created for the analyses are available within the R package moveNT.

摘要

网络(图)理论是一种用于描述离散对象之间结构和动态的流行分析框架,特别擅长识别关键枢纽和连接模式。确定这些属性是动物运动研究的基本目标,但网络理论很少直接应用于动物迁移数据。我们开发了一种方法,通过将占用的像素定义为节点,以及这些像素之间的连接定义为边缘,允许使用网络理论分析运动数据。我们首先在模拟运动轨迹上量化节点级(局部)度量和图级(系统)度量,以评估这些度量识别运动路径中已知属性的能力。然后,我们将我们的框架应用于来自非洲象(Loxodonta africana)、巨型加拉帕戈斯陆龟(Chelonoidis spp.)和骡鹿(Odocoileous hemionus)的实证数据。我们的结果表明,某些节点级度量,即度数、权重和介数,在捕获空间使用的局部模式方面表现良好,例如核心区域的定义和用于斑块间运动的路径。这些度量在数据集之间普遍适用,表明它们对分析结构或运动策略的假设具有稳健性。其他度量有效地捕获局部模式,但对指定的图属性敏感,表明特定于案例的应用。我们的分析表明,图级度量不太可能优于其他方法,用于分类一般运动策略(中心觅食、迁徙、游牧)。通过识别关键节点,我们的方法提供了一个稳健的定量框架,用于识别空间使用的局部属性,可用于评估特定节点的损失对范围广泛的连接性的影响。我们的网络方法直观,可在不完美采样或大规模数据集上高效实现,为保护主义者提供了一种分析运动数据的框架。为分析而创建的功能可在 R 包 moveNT 中使用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验