Department of Chemistry, Brown University, Providence, RI, USA.
Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY, USA.
Nature. 2018 Sep;561(7723):378-382. doi: 10.1038/s41586-018-0512-5. Epub 2018 Sep 19.
The assembly of uniform nanocrystal building blocks into well ordered superstructures is a fundamental strategy for the generation of meso- and macroscale metamaterials with emergent nanoscopic functionalities. The packing of spherical nanocrystals, which frequently adopt dense, face-centred-cubic or hexagonal-close-packed arrangements at thermodynamic equilibrium, has been much more widely studied than that of non-spherical, polyhedral nanocrystals, despite the fact that the latter have intriguing anisotropic properties resulting from the shapes of the building blocks. Here we report the packing of truncated tetrahedral quantum dot nanocrystals into three distinct superstructures-one-dimensional chiral tetrahelices, two-dimensional quasicrystal-approximant superlattices and three-dimensional cluster-based body-centred-cubic single supercrystals-by controlling the assembly conditions. Using techniques in real and reciprocal spaces, we successfully characterized the superstructures from their nanocrystal translational orderings down to the atomic-orientation alignments of individual quantum dots. Our packing models showed that formation of the nanocrystal superstructures is dominated by the selective facet-to-facet contact induced by the anisotropic patchiness of the tetrahedra. This study provides information about the packing of non-spherical nanocrystals into complex superstructures, and may enhance the potential of self-assembled nanocrystal metamaterials in practical applications.
将均匀的纳米晶体构建块组装成有序的超结构是产生具有新兴纳米尺度功能的介观和宏观尺度超材料的基本策略。在热力学平衡下,球形纳米晶体经常采用密集的面心立方或六方密堆积排列,这已经得到了更广泛的研究,尽管事实上,由于构建块的形状,后者具有有趣的各向异性性质。在这里,我们通过控制组装条件,报道了截断四面体量子点纳米晶体组装成三种不同超结构的情况——一维手性四面体螺旋、二维准晶近似超晶格和三维基于团簇的体心立方单超晶体。通过实空间和倒空间技术,我们成功地从纳米晶体的平移有序到单个量子点的原子取向排列来对超结构进行了表征。我们的组装模型表明,纳米晶体超结构的形成主要由各向异性的四面体的选择性面-面接触所决定。这项研究提供了关于非球形纳米晶体组装成复杂超结构的信息,并可能增强自组装纳米晶体超材料在实际应用中的潜力。