Zhao Shensheng, Lee Leanne, Zhao Yang, Liang Nu-Chu, Chen Yun-Sheng
Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, United States.
Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States.
Front Bioeng Biotechnol. 2023 Jan 17;11:1102651. doi: 10.3389/fbioe.2023.1102651. eCollection 2023.
Translatable imaging agents are a crucial element of successful molecular imaging. Photoacoustic molecular imaging relies on optical absorbing materials to generate a sufficient signal. However, few materials approved for human use can generate adequate photoacoustic responses. Here we report a new nanoengineering approach to further improve photoacoustic response from biocompatible materials. Our study shows that when optical absorbers are incorporated into the shell of a gaseous nanobubble, their photoacoustic signal can be significantly enhanced compared to the original form. As an example, we constructed nanobubbles using biocompatible indocyanine green (ICG) and biodegradable poly(lactic-co-glycolic acid) (PLGA). We demonstrated that these ICG nanobubbles generate a strong ultrasound signal and almost four-fold photoacoustic signal compared to the same concentration of ICG solution; our theoretical calculations corroborate this effect and elucidate the origin of the photoacoustic enhancement. To demonstrate their molecular imaging performance, we conjugated gastrin-releasing peptide receptor (GRPR) targeting ligands with the ICG nanobubbles. Our dual photoacoustic/ultrasound molecular imaging shows a more than three-fold enhancement in targeting specificity of the GRPR-targeted ICG nanobubbles, compared to untargeted nanobubbles or prostate cancer cells not expressing GRPR, in a prostate cancer xenograft mouse model .
可翻译的成像剂是成功进行分子成像的关键要素。光声分子成像依赖于光吸收材料来产生足够的信号。然而,很少有获批用于人体的材料能够产生足够的光声响应。在此,我们报告一种新的纳米工程方法,以进一步提高生物相容性材料的光声响应。我们的研究表明,当光吸收剂被掺入气态纳米气泡的壳层中时,与原始形式相比,它们的光声信号可以显著增强。例如,我们使用生物相容性的吲哚菁绿(ICG)和可生物降解的聚乳酸-羟基乙酸共聚物(PLGA)构建了纳米气泡。我们证明,与相同浓度的ICG溶液相比,这些ICG纳米气泡产生强烈的超声信号和几乎四倍的光声信号;我们的理论计算证实了这种效应,并阐明了光声增强的起源。为了证明它们的分子成像性能,我们将胃泌素释放肽受体(GRPR)靶向配体与ICG纳米气泡偶联。在前列腺癌异种移植小鼠模型中,我们的双光声/超声分子成像显示,与未靶向的纳米气泡或不表达GRPR的前列腺癌细胞相比,GRPR靶向的ICG纳米气泡的靶向特异性提高了三倍以上。