Durston Antony J
Faculty of Science, Institute of Biology Leiden, Leiden University, Leiden, Netherlands.
Front Cell Dev Biol. 2018 Sep 4;6:102. doi: 10.3389/fcell.2018.00102. eCollection 2018.
A two tier mechanism mediates Hox collinearity. Besides the familiar collinear chromatin modification within each Hox cluster (nanocollinearity), there is also a macrocollinearity tier. Individual Hox clusters and individual cells are coordinated and synchronized to generate multiscale (macro and nano) collinearity in the early vertebrate embryo. Macro-collinearity is mediated by three non-cell autonomous Hox-Hox interactions. These mediate temporal collinearity in early NOM (non-organizer mesoderm), time space translation where temporal collinearity is translated to spatial collinearity along the early embryo's main body axis and neural transformation, where Hox expression is copied monospecifically from NOM mesoderm to overlying neurectoderm in the late gastrula. Unlike nanocollinearity, which is Hox cluster restricted, axial macrocollinearity extends into the head and EAD domains, thus covering the whole embryonic anterior-posterior (A-P) axis. EAD: extreme anterior domain, the only A-P axial domain anterior to the head. The whole time space translation mechanism interacts with A-P signaling pathways via "decision points," separating different domains on the axis.
一种两层机制介导了Hox基因共线性。除了每个Hox基因簇内常见的共线性染色质修饰(微共线性)外,还存在一个宏共线性层。在早期脊椎动物胚胎中,单个Hox基因簇和单个细胞相互协调并同步,以产生多尺度(宏观和微观)共线性。宏共线性由三种非细胞自主的Hox-Hox相互作用介导。这些相互作用介导了早期非组织者中胚层(NOM)的时间共线性、时间-空间转换(其中时间共线性沿着早期胚胎的主体轴转换为空间共线性)以及神经转化(在原肠胚后期,Hox基因表达从NOM中胚层特异性地复制到上覆的神经外胚层)。与局限于Hox基因簇的微共线性不同,轴向宏共线性延伸到头部和EAD区域,从而覆盖整个胚胎的前后(A-P)轴。EAD:极前区域,是头部前方唯一的A-P轴区域。整个时间-空间转换机制通过“决策点”与A-P信号通路相互作用,在轴上分隔不同的区域。