Uzdenova Aminat, Kovalenko Anna, Urtenov Makhamet, Nikonenko Victor
Department of Computer Science and Computational Mathematics, Karachaevo-Cherkessky State University Named after U.D. Aliev, Karachaevsk 369202, Russia.
Department of Applied Mathematics, Kuban State University, Krasnodar 350040, Russia.
Membranes (Basel). 2018 Sep 19;8(3):84. doi: 10.3390/membranes8030084.
The use of the Nernst⁻Planck and Poisson (NPP) equations allows computation of the space charge density near solution/electrode or solution/ion-exchange membrane interface. This is important in modelling ion transfer, especially when taking into account electroconvective transport. The most solutions in literature use the condition setting a potential difference in the system (potentiostatic or potentiodynamic mode). However, very often in practice and experiment (such as chronopotentiometry and voltammetry), the galvanostatic/galvanodynamic mode is applied. In this study, a depleted stagnant diffusion layer adjacent to an ion-exchange membrane is considered. In this article, a new boundary condition is proposed, which sets a total current density, , via an equation expressing the potential gradient as an explicit function of . The numerical solution of the problem is compared with an approximate solution, which is obtained by a combination of numerical solution in one part of the diffusion layer (including the electroneutral region and the extended space charge region, zone (I) with an analytical solution in the other part (the quasi-equilibrium electric double layer (EDL), zone (II). It is shown that this approach (called the "zonal" model) allows reducing the computational complexity of the problem tens of times without significant loss of accuracy. An additional simplification is introduced by neglecting the thickness of the quasi-equilibrium EDL in comparison to the diffusion layer thickness (the "simplified" model). For the first time, the distributions of concentrations, space charge density and current density along the distance to an ion-exchange membrane surface are computed as functions of time in galvanostatic mode. The calculation of the transition time, , for an ion-exchange membrane agree with an experiment from literature. It is suggested that rapid changes of space charge density, and current density with time and distance, could lead to lateral electroosmotic flows delaying depletion of near-surface solution and increasing .
使用能斯特 - 普朗克方程和泊松方程(NPP 方程)可以计算溶液/电极或溶液/离子交换膜界面附近的空间电荷密度。这对于模拟离子转移非常重要,尤其是在考虑电对流传输时。文献中的大多数解决方案都使用设定系统电位差的条件(恒电位或动电位模式)。然而,在实际应用和实验中(如计时电位法和伏安法),经常采用恒电流/恒电流动力学模式。在本研究中,考虑了与离子交换膜相邻的耗尽停滞扩散层。本文提出了一种新的边界条件,该条件通过将电位梯度表示为 的显式函数的方程来设定总电流密度 。将该问题的数值解与近似解进行了比较,近似解是通过在扩散层的一部分(包括电中性区域和扩展空间电荷区域,区域 (I))进行数值求解,并在另一部分(准平衡电双层 (EDL),区域 (II))采用解析解相结合得到的。结果表明,这种方法(称为“分区”模型)可以将问题的计算复杂度降低数十倍,而不会显著损失精度。通过与扩散层厚度相比忽略准平衡 EDL 的厚度(“简化”模型)引入了进一步的简化。首次在恒电流模式下计算了沿离子交换膜表面距离的浓度、空间电荷密度和电流密度随时间的分布。离子交换膜的过渡时间 的计算结果与文献中的实验结果一致。研究表明,空间电荷密度和电流密度随时间和距离的快速变化可能导致横向电渗流,从而延迟近表面溶液的耗尽并增加 。