Nikonenko Victor, Urtenov Mahamet, Mareev Semyon, Pourcelly Gérald
Department/school, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia.
Institut Européen des Membranes, UMR 5635 (CNRS-ENSCM-UM), Université Montpellier, Place E. Bataillon, F-34095 Montpellier, France.
Membranes (Basel). 2020 Jan 31;10(2):22. doi: 10.3390/membranes10020022.
Water splitting (WS) and electroconvection (EC) are the main phenomena affecting ion transfer through ion-exchange membranes in intensive current regimes of electrodialysis. While EC enhances ion transport, WS, in most cases, is an undesirable effect reducing current efficiency and causing precipitation of sparingly soluble compounds. A mathematical description of the transfer of salt ions and H (OH) ions generated in WS is presented. The model is based on the Nernst-Planck and Poisson equations; it takes into account deviation from local electroneutrality in the depleted diffusion boundary layer (DBL). The current transported by water ions is given as a parameter. Numerical and semi-analytical solutions are developed. The analytical solution is found by dividing the depleted DBL into three zones: the electroneutral region, the extended space charge region (SCR), and the quasi-equilibrium zone near the membrane surface. There is an excellent agreement between two solutions when calculating the concentration of all four ions, electric field, and potential drop across the depleted DBL. The treatment of experimental partial current-voltage curves shows that under the same current density, the surface space charge density at the anion-exchange membrane is lower than that at the cation-exchange membrane. This explains the negative effect of WS, which partially suppresses EC and reduces salt ion transfer. The restrictions of the analytical solution, namely, the local chemical equilibrium assumption, are discussed.
水分解(WS)和电对流(EC)是在电渗析强电流工况下影响离子通过离子交换膜传输的主要现象。虽然EC能增强离子传输,但在大多数情况下,WS是一种不良效应,会降低电流效率并导致微溶化合物沉淀。本文给出了WS过程中产生的盐离子和H(OH)离子传输的数学描述。该模型基于能斯特 - 普朗克方程和泊松方程;它考虑了耗尽扩散边界层(DBL)中局部电中性的偏离。水离子传输的电流作为一个参数给出。开发了数值解和半解析解。通过将耗尽的DBL分为三个区域来找到解析解:电中性区域、扩展空间电荷区域(SCR)和膜表面附近的准平衡区域。在计算所有四种离子的浓度、电场以及耗尽DBL上的电位降时,两种解之间有很好的一致性。对实验部分电流 - 电压曲线的处理表明,在相同电流密度下,阴离子交换膜处的表面空间电荷密度低于阳离子交换膜处的。这解释了WS的负面影响——部分抑制了EC并减少了盐离子传输。讨论了解析解的局限性,即局部化学平衡假设。