Suppr超能文献

分子动力学模拟概览。

Molecular Dynamics Simulation for All.

机构信息

Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA.

Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA.

出版信息

Neuron. 2018 Sep 19;99(6):1129-1143. doi: 10.1016/j.neuron.2018.08.011.

Abstract

The impact of molecular dynamics (MD) simulations in molecular biology and drug discovery has expanded dramatically in recent years. These simulations capture the behavior of proteins and other biomolecules in full atomic detail and at very fine temporal resolution. Major improvements in simulation speed, accuracy, and accessibility, together with the proliferation of experimental structural data, have increased the appeal of biomolecular simulation to experimentalists-a trend particularly noticeable in, although certainly not limited to, neuroscience. Simulations have proven valuable in deciphering functional mechanisms of proteins and other biomolecules, in uncovering the structural basis for disease, and in the design and optimization of small molecules, peptides, and proteins. Here we describe, in practical terms, the types of information MD simulations can provide and the ways in which they typically motivate further experimental work.

摘要

近年来,分子动力学(MD)模拟在分子生物学和药物发现领域的影响显著扩大。这些模拟能够以全原子细节和非常精细的时间分辨率捕捉蛋白质和其他生物分子的行为。模拟速度、准确性和可访问性的重大改进,以及实验结构数据的大量增加,增加了生物分子模拟对实验人员的吸引力——这种趋势在神经科学中尤为明显,但肯定不仅限于此。模拟已被证明在破译蛋白质和其他生物分子的功能机制、揭示疾病的结构基础以及小分子、肽和蛋白质的设计和优化方面具有价值。在这里,我们从实际角度描述了 MD 模拟可以提供的信息类型,以及它们通常激发进一步实验工作的方式。

相似文献

1
Molecular Dynamics Simulation for All.分子动力学模拟概览。
Neuron. 2018 Sep 19;99(6):1129-1143. doi: 10.1016/j.neuron.2018.08.011.

引用本文的文献

本文引用的文献

2
Structure of the µ-opioid receptor-G protein complex.μ-阿片受体- G 蛋白复合物的结构。
Nature. 2018 Jun;558(7711):547-552. doi: 10.1038/s41586-018-0219-7. Epub 2018 Jun 13.
3
Developing a molecular dynamics force field for both folded and disordered protein states.为折叠和无序的蛋白质状态开发分子动力学力场。
Proc Natl Acad Sci U S A. 2018 May 22;115(21):E4758-E4766. doi: 10.1073/pnas.1800690115. Epub 2018 May 7.
4
Catalytic activation of β-arrestin by GPCRs.GPCR 对β-arrestin 的催化激活。
Nature. 2018 May;557(7705):381-386. doi: 10.1038/s41586-018-0079-1. Epub 2018 May 2.
5
Molecular mechanism of GPCR-mediated arrestin activation.GPCR 介导热激蛋白激活的分子机制。
Nature. 2018 May;557(7705):452-456. doi: 10.1038/s41586-018-0077-3. Epub 2018 May 2.
7
Structure and dynamics of GPCR signaling complexes.G 蛋白偶联受体信号复合物的结构与动力学
Nat Struct Mol Biol. 2018 Jan;25(1):4-12. doi: 10.1038/s41594-017-0011-7. Epub 2018 Jan 8.
8
Heat activation is intrinsic to the pore domain of TRPV1.热激活是 TRPV1 孔域的固有特性。
Proc Natl Acad Sci U S A. 2018 Jan 9;115(2):E317-E324. doi: 10.1073/pnas.1717192115. Epub 2017 Dec 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验