Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan.
Nature. 2018 Sep;561(7723):349-354. doi: 10.1038/s41586-018-0504-5. Epub 2018 Aug 29.
Both designed and natural anion-conducting channelrhodopsins (dACRs and nACRs, respectively) have been widely applied in optogenetics (enabling selective inhibition of target-cell activity during animal behaviour studies), but each class exhibits performance limitations, underscoring trade-offs in channel structure-function relationships. Therefore, molecular and structural insights into dACRs and nACRs will be critical not only for understanding the fundamental mechanisms of these light-gated anion channels, but also to create next-generation optogenetic tools. Here we report crystal structures of the dACR iC++, along with spectroscopic, electrophysiological and computational analyses that provide unexpected insights into pH dependence, substrate recognition, channel gating and ion selectivity of both dACRs and nACRs. These results enabled us to create an anion-conducting channelrhodopsin integrating the key features of large photocurrent and fast kinetics alongside exclusive anion selectivity.
无论是设计的还是天然的阴离子通道型视蛋白(分别为 dACRs 和 nACRs),都已广泛应用于光遗传学(使在动物行为研究中选择性地抑制靶细胞的活性成为可能),但每一类都表现出性能上的限制,这凸显了通道结构-功能关系的权衡。因此,对 dACRs 和 nACRs 的分子和结构的深入了解不仅对于理解这些光门控阴离子通道的基本机制至关重要,而且对于创建下一代光遗传学工具也至关重要。在这里,我们报告了 dACR iC++的晶体结构,以及光谱、电生理和计算分析,这些分析为 dACRs 和 nACRs 的 pH 依赖性、底物识别、通道门控和离子选择性提供了意想不到的见解。这些结果使我们能够创建一种阴离子通道型视蛋白,它结合了大光电流和快速动力学的关键特征,以及独特的阴离子选择性。