Suppr超能文献

ASNR-ACR-RSNA 通用数据元素项目:它将为神经放射学领域带来什么?

The ASNR-ACR-RSNA Common Data Elements Project: What Will It Do for the House of Neuroradiology?

机构信息

From the Department of Radiology/Neuroradiology (A.E.F.), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania

Standards and Guidelines Committee for the American Society of Neuroradiology (J.E.J.), Rancho Palos Verdas, California.

出版信息

AJNR Am J Neuroradiol. 2019 Jan;40(1):14-18. doi: 10.3174/ajnr.A5780. Epub 2018 Sep 20.

Abstract

The American Society of Neuroradiology has teamed up with the American College of Radiology and the Radiological Society of North America to create a catalog of neuroradiology common data elements that addresses specific clinical use cases. Fundamentally, a common data element is a question, concept, measurement, or feature with a set of controlled responses. This could be a measurement, subjective assessment, or ordinal value. Common data elements can be both machine- and human-generated. Rather than redesigning neuroradiology reporting, the goal is to establish the minimum number of "essential" concepts that should be in a report to address a clinical question. As medicine shifts toward value-based service compensation methodologies, there will be an even greater need to benchmark quality care and allow peer-to-peer comparisons in all specialties. Many government programs are now focusing on these measures, the most recent being the Merit-Based Incentive Payment System and the Medicare Access Children's Health Insurance Program Reauthorization Act of 2015. Standardized or structured reporting is advocated as one method of assessing radiology report quality, and common data elements are a means for expressing these concepts. Incorporating common data elements into clinical practice fosters a number of very useful downstream processes including establishing benchmarks for quality-assurance programs, ensuring more accurate billing, improving communication to providers and patients, participating in public health initiatives, creating comparative effectiveness research, and providing classifiers for machine learning. Generalized adoption of the recommended common data elements in clinical practice will provide the means to collect and compare imaging report data from multiple institutions locally, regionally, and even nationally, to establish quality benchmarks.

摘要

美国神经放射学会与美国放射学会和北美放射学会合作,创建了一个神经放射学通用数据元素目录,该目录针对特定的临床用例。从根本上讲,通用数据元素是一个具有一组受控响应的问题、概念、测量值或特征。这可以是测量值、主观评估或有序值。通用数据元素可以是机器生成的,也可以是人工生成的。其目标不是重新设计神经放射学报告,而是确定报告中应包含的“基本”概念的最小数量,以解决临床问题。随着医学向基于价值的服务补偿方法转变,基准质量护理并允许所有专业领域的同行之间进行比较的需求将更大。许多政府计划现在都在关注这些措施,最近的措施是基于绩效的激励支付系统和 2015 年医疗保险儿童健康保险计划再授权法案。提倡标准化或结构化报告是评估放射学报告质量的一种方法,通用数据元素是表达这些概念的一种手段。将通用数据元素纳入临床实践可以促进许多非常有用的下游流程,包括为质量保证计划建立基准、确保更准确的计费、改善与提供者和患者的沟通、参与公共卫生计划、创建比较效果研究以及为机器学习提供分类器。在临床实践中广泛采用推荐的通用数据元素将为从本地、地区甚至全国范围内的多个机构收集和比较成像报告数据提供手段,以建立质量基准。

相似文献

1
The ASNR-ACR-RSNA Common Data Elements Project: What Will It Do for the House of Neuroradiology?
AJNR Am J Neuroradiol. 2019 Jan;40(1):14-18. doi: 10.3174/ajnr.A5780. Epub 2018 Sep 20.
2
Performance measures in neuroradiology.
AJNR Am J Neuroradiol. 2007 Sep;28(8):1435-8. doi: 10.3174/ajnr.A0672.
3
Contextual Radiology Reporting: A New Approach to Neuroradiology Structured Templates.
AJNR Am J Neuroradiol. 2018 Aug;39(8):1406-1414. doi: 10.3174/ajnr.A5697. Epub 2018 Jun 14.
6
Quality measures and pediatric radiology: suggestions for the transition to value-based payment.
Pediatr Radiol. 2017 Jun;47(7):776-782. doi: 10.1007/s00247-017-3857-2. Epub 2017 May 23.
9
The present and future of quality measures and public reporting in neurosurgery.
Neurosurg Focus. 2015 Dec;39(6):E3. doi: 10.3171/2015.8.FOCUS15354.

引用本文的文献

1
The Evolution of Radiology Image Annotation in the Era of Large Language Models.
Radiol Artif Intell. 2025 Jul;7(4):e240631. doi: 10.1148/ryai.240631.
2
Standardized reporting for Head CT Scans in patients suspected of traumatic brain injury (TBI): An international expert endeavor.
Neuroradiology. 2024 Sep;66(9):1513-1526. doi: 10.1007/s00234-024-03410-2. Epub 2024 Jul 4.
4
What to report in sellar tumor MRI? A nationwide survey among German pituitary surgeons, radiation oncologists, and endocrinologists.
Neuroradiology. 2023 Nov;65(11):1579-1588. doi: 10.1007/s00234-023-03222-w. Epub 2023 Sep 22.
5
Time for change? Radiologists highly concordant assessing change in stenoses on follow-up cervical spine MRI.
Neuroradiol J. 2023 Oct;36(5):588-592. doi: 10.1177/19714009231163562. Epub 2023 Apr 11.
7
Fostering a Healthy AI Ecosystem for Radiology: Conclusions of the 2018 RSNA Summit on AI in Radiology.
Radiol Artif Intell. 2019 Mar 27;1(2):190021. doi: 10.1148/ryai.2019190021. eCollection 2019 Mar.

本文引用的文献

1
Contextual Radiology Reporting: A New Approach to Neuroradiology Structured Templates.
AJNR Am J Neuroradiol. 2018 Aug;39(8):1406-1414. doi: 10.3174/ajnr.A5697. Epub 2018 Jun 14.
2
Management-Based Structured Reporting of Posttreatment Glioma Response With the Brain Tumor Reporting and Data System.
J Am Coll Radiol. 2018 May;15(5):767-771. doi: 10.1016/j.jacr.2018.01.022. Epub 2018 Mar 2.
3
Structured Reporting in Neuroradiology: Intracranial Tumors.
Front Neurol. 2018 Feb 6;9:32. doi: 10.3389/fneur.2018.00032. eCollection 2018.
4
Enabling the Next-Generation Radiology Report: Description of Two New System Standards.
Radiographics. 2017 Nov-Dec;37(7):2106-2112. doi: 10.1148/rg.2017160106. Epub 2017 Oct 2.
5
Creation of an Open Framework for Point-of-Care Computer-Assisted Reporting and Decision Support Tools for Radiologists.
J Am Coll Radiol. 2017 Sep;14(9):1184-1189. doi: 10.1016/j.jacr.2017.04.031. Epub 2017 Jun 23.
7
Common Data Elements in Radiology.
Radiology. 2017 Jun;283(3):837-844. doi: 10.1148/radiol.2016161553. Epub 2016 Nov 10.
8
Value of a standardized lexicon for reporting levels of diagnostic certainty in prostate MRI.
AJR Am J Roentgenol. 2014 Dec;203(6):W651-7. doi: 10.2214/AJR.14.12654.
9
Improving communication of diagnostic radiology findings through structured reporting.
Radiology. 2011 Jul;260(1):174-81. doi: 10.1148/radiol.11101913. Epub 2011 Apr 25.
10
Toward best practices in radiology reporting.
Radiology. 2009 Sep;252(3):852-6. doi: 10.1148/radiol.2523081992.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验