Suppr超能文献

大语言模型时代放射学图像标注的演变

The Evolution of Radiology Image Annotation in the Era of Large Language Models.

作者信息

Flanders Adam E, Wang Xindi, Wu Carol C, Kitamura Felipe C, Shih George, Mongan John, Peng Yifan

机构信息

Department of Radiology, Thomas Jefferson University, 132 S Tenth St, Ste 1080 B Main Building, Philadelphia, PA 19107.

Department of Population Health Sciences, Weill Cornell Medicine, New York, NY.

出版信息

Radiol Artif Intell. 2025 Jul;7(4):e240631. doi: 10.1148/ryai.240631.

Abstract

Although there are relatively few diverse, high-quality medical imaging datasets on which to train computer vision artificial intelligence models, even fewer datasets contain expertly classified observations that can be repurposed to train or test such models. The traditional annotation process is laborious and time-consuming. Repurposing annotations and consolidating similar types of annotations from disparate sources has never been practical. Until recently, the use of natural language processing to convert a clinical radiology report into labels required custom training of a language model for each use case. Newer technologies such as large language models have made it possible to generate accurate and normalized labels at scale, using only clinical reports and specific prompt engineering. The combination of automatically generated labels extracted and normalized from reports in conjunction with foundational image models provides a means to create labels for model training. This article provides a short history and review of the annotation and labeling process of medical images, from the traditional manual methods to the newest semiautomated methods that provide a more scalable solution for creating useful models more efficiently. Feature Detection, Diagnosis, Semi-supervised Learning © RSNA, 2025.

摘要

尽管可用于训练计算机视觉人工智能模型的高质量医学影像数据集相对较少,但包含可用于训练或测试此类模型的经专家分类的观察结果的数据集更少。传统的标注过程既费力又耗时。重新利用标注并整合来自不同来源的类似类型的标注从来都不切实际。直到最近,使用自然语言处理将临床放射学报告转换为标签还需要针对每个用例对语言模型进行定制训练。诸如大语言模型等较新的技术使得仅使用临床报告和特定的提示工程就能大规模生成准确且标准化的标签成为可能。从报告中提取并标准化的自动生成的标签与基础图像模型相结合,为模型训练创建标签提供了一种方法。本文简要回顾了医学图像的标注和标记过程,从传统的手动方法到最新的半自动化方法,这些方法为更高效地创建有用模型提供了更具扩展性的解决方案。特征检测、诊断、半监督学习 © RSNA,2025 年。

相似文献

4
PDF Entity Annotation Tool (PEAT).PDF实体注释工具(PEAT)。
J Open Source Softw. 2025 Apr 8;10(108):5336. doi: 10.21105/joss.05336.

本文引用的文献

10
Automated image label extraction from radiology reports - A review.从放射学报告中自动提取图像标签 - 综述。
Artif Intell Med. 2024 Mar;149:102814. doi: 10.1016/j.artmed.2024.102814. Epub 2024 Feb 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验