a Department of Biological Science , Tarbiat Modares University , Tehran , Iran.
J Biomol Struct Dyn. 2019 Aug;37(13):3434-3444. doi: 10.1080/07391102.2018.1516571. Epub 2019 Jan 18.
Self-assembling alkyl-peptides are important molecules due to their ability to construct nano-level structures such as nanofibers to be utilized as tissue engineering scaffolds. The bioactive epitope of FAQRVPP which acts as neural stem cells (NSCs) outgrowth inducing factor is used in nanofiber structures. Based on previous experimental studies the density and distribution pattern of the epitopes on the surface of the nanofibers plays an important role in the differentiation function efficiency. We decided to survey and compare the stability of two pre-constructed fiber structures in the forms of all-functionalized nanofiber (containing only bioactive alkyl-peptides) and distributed functionalized nanofiber (a combination of nonbioactive and bioactive alkyl-peptides with ratio 2:1). Our findings reveal that the all-functionalized fiber shows an unstable structure and is split into intermediate micelle-like structures to reduce compactness and steric hindrance of functional epitopes whereas the distributed functionalized fiber shows an integrated stable nanofiber with a more amount of beta sheets that are well-organized and oriented around the hydrophobic core. The hydrogen bonds and energy profiles of the structures indicate the role of hydrophobic interactions during the alkyl-chain core formation and the important role of electrostatic interactions and hydrogen bond network in the stability of the final structures. Finally, it seems that the possibility of the presence of intermediate structure is increased in the all-functionalized nanofiber environment, and it can reduce functional efficiency of the scaffolds. These findings can help to design more efficient nanofiber structures with different goals in scaffolds for tissue engineering. Abbreviations MD Molecular Dynamics NSCs Neural Stem Cells PME Particle mesh Ewald RDF Radial Distribution Function RG Radius of gyration RASA Relative Accessible Surface Area RMSD Root Mean Square Deviations SASA Solvent Accessible Surface Area. Communicated by Ramaswamy H. Sarma.
自组装烷基肽由于能够构建纳米级结构(如纳米纤维)而成为重要的分子,可作为组织工程支架。FAQRVPP 的生物活性表位作为神经干细胞(NSCs)生长诱导因子,用于纳米纤维结构。基于先前的实验研究,表位在纳米纤维表面的密度和分布模式对分化功能效率起着重要作用。我们决定调查和比较两种预先构建的纤维结构的稳定性,这两种纤维结构分别是全功能化纳米纤维(仅包含生物活性烷基肽)和分布功能化纳米纤维(非生物活性和生物活性烷基肽的组合,比例为 2:1)。我们的研究结果表明,全功能化纤维表现出不稳定的结构,并分裂成中间胶束状结构,以减少功能表位的紧凑性和空间位阻,而分布功能化纤维则表现出集成的稳定纳米纤维,具有更多的β片层,这些β片层在疏水性核心周围排列整齐并定向。结构的氢键和能量分布表明疏水相互作用在烷基链核心形成过程中的作用,以及静电相互作用和氢键网络在最终结构稳定性中的重要作用。最后,似乎在全功能化纳米纤维环境中存在中间结构的可能性增加,这可能会降低支架的功能效率。这些发现有助于设计具有不同目标的更有效的纳米纤维结构,以用于组织工程支架。缩写 MD 分子动力学 NSCs 神经干细胞 PME 粒子网格 Ewald RDF 径向分布函数 RG 回转半径 RASA 相对可及表面积 RMSD 均方根偏差 SASA 溶剂可及表面积。由 Ramaswamy H. Sarma 交流。