Suppr超能文献

在蛋白质序列家族中氨基酸模式的自然结构。

On the Natural Structure of Amino Acid Patterns in Families of Protein Sequences.

机构信息

KAPOW, Departamento de Computación , Facultad de Ciencias Exactas y Naturales, UBA-CONICET-ICC , Buenos Aires , Argentina.

Protein Physiology Lab, Departamento de Química Biológica , Facultad de Ciencias Exactas y Naturales, UBA-CONICET-IQUIBICEN , Buenos Aires , Argentina.

出版信息

J Phys Chem B. 2018 Dec 13;122(49):11295-11301. doi: 10.1021/acs.jpcb.8b07206. Epub 2018 Oct 8.

Abstract

All known terrestrial proteins are coded as continuous strings of ≈20 amino acids. The patterns formed by the repetitions of elements in groups of finite sequences describes the natural architectures of protein families. We present a method to search for patterns and groupings of patterns in protein sequences using a mathematically precise definition for "repetition", an efficient algorithmic implementation and a robust scoring system with no adjustable parameters. We show that the sequence patterns can be well-separated into disjoint classes according to their recurrence in nested structures. The statistics of the occurrences of patterns indicate that short repetitions are sufficient to account for the differences between natural families and randomized groups of sequences by more than 10 standard deviations, while contiguous sequence patterns shorter than 5 residues are effectively random in their occurrences. A small subset of patterns is sufficient to account for a robust "familiarity" definition between arbitrary sets of sequences.

摘要

所有已知的陆地蛋白质都被编码为 ≈20 个氨基酸的连续字符串。在有限序列组中元素重复形成的模式描述了蛋白质家族的自然结构。我们提出了一种使用“重复”的数学精确定义、有效的算法实现和没有可调参数的稳健评分系统在蛋白质序列中搜索模式和模式分组的方法。我们表明,序列模式可以根据它们在嵌套结构中的重复情况很好地分为不相交的类。模式出现的统计数据表明,短重复足以解释自然家族和随机序列组之间的差异,超过 10 个标准差,而连续的序列模式短于 5 个残基在出现时是有效的随机的。一小部分模式足以解释任意序列集之间稳健的“熟悉度”定义。

相似文献

1
On the Natural Structure of Amino Acid Patterns in Families of Protein Sequences.在蛋白质序列家族中氨基酸模式的自然结构。
J Phys Chem B. 2018 Dec 13;122(49):11295-11301. doi: 10.1021/acs.jpcb.8b07206. Epub 2018 Oct 8.
5
Discovering co-occurring patterns and their biological significance in protein families.发现蛋白质家族中的共现模式及其生物学意义。
BMC Bioinformatics. 2014;15 Suppl 12(Suppl 12):S2. doi: 10.1186/1471-2105-15-S12-S2. Epub 2014 Nov 6.

本文引用的文献

1
Developing a molecular dynamics force field for both folded and disordered protein states.为折叠和无序的蛋白质状态开发分子动力学力场。
Proc Natl Acad Sci U S A. 2018 May 22;115(21):E4758-E4766. doi: 10.1073/pnas.1800690115. Epub 2018 May 7.
2
Self-organization, entropy and allostery.自组织、熵和变构。
Biochem Soc Trans. 2018 Jun 19;46(3):587-597. doi: 10.1042/BST20160144. Epub 2018 Apr 20.
3
Frustration, function and folding.挫折、功能和折叠。
Curr Opin Struct Biol. 2018 Feb;48:68-73. doi: 10.1016/j.sbi.2017.09.006. Epub 2017 Nov 5.
4
Theory, simulations, and experiments show that proteins fold by multiple pathways.理论、模拟和实验表明,蛋白质通过多种途径折叠。
Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):E9759-E9760. doi: 10.1073/pnas.1716444114. Epub 2017 Oct 30.
8
Learning To Fold Proteins Using Energy Landscape Theory.利用能量景观理论学习蛋白质折叠
Isr J Chem. 2014 Aug;54(8-9):1311-1337. doi: 10.1002/ijch.201300145.
9
Frustration in biomolecules.生物分子中的挫折感。
Q Rev Biophys. 2014 Nov;47(4):285-363. doi: 10.1017/S0033583514000092. Epub 2014 Sep 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验