Department of Psychiatry and Psychotherapy, Heidelberg University, Mannheim, Germany.
Department of Genetic Epidemiology in Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
Bioinformatics. 2019 Apr 15;35(8):1433-1435. doi: 10.1093/bioinformatics/bty814.
Genotype imputation is essential for genome-wide association studies (GWAS) to retrieve information of untyped variants and facilitate comparability across studies. However, there is a lack of automated pipelines that perform all required processing steps prior to and following imputation.
Based on widely used and freely available tools, we have developed Gimpute, an automated processing and imputation pipeline for genome-wide association data. Gimpute includes processing steps for genotype liftOver, quality control, population outlier detection, haplotype pre-phasing, imputation, post imputation, data management and the extension to other existing pipeline.
The Gimpute package is an open source R package and is freely available at https://github.com/transbioZI/Gimpute.
Supplementary data are available at Bioinformatics online.
基因型推断对于全基因组关联研究(GWAS)至关重要,可用于检索未分型变体的信息,并促进研究之间的可比性。然而,目前缺乏在推断前后执行所有必需处理步骤的自动化管道。
基于广泛使用和免费提供的工具,我们开发了 Gimpute,这是一种用于全基因组关联数据的自动化处理和推断管道。Gimpute 包括基因型 liftOver、质量控制、群体异常值检测、单倍型预相位、推断、推断后、数据管理以及扩展到其他现有管道的处理步骤。
Gimpute 包是一个开源 R 包,可在 https://github.com/transbioZI/Gimpute 上免费获取。
补充数据可在 Bioinformatics 在线获取。