Suppr超能文献

RICOPILI:Consortium Pipeline 的快速推断。

RICOPILI: Rapid Imputation for COnsortias PIpeLIne.

机构信息

Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.

Analytic and Translational Genetics Unit, Massachusetts General Hospital, Cambridge, MA 02114, USA.

出版信息

Bioinformatics. 2020 Feb 1;36(3):930-933. doi: 10.1093/bioinformatics/btz633.

Abstract

SUMMARY

Genome-wide association study (GWAS) analyses, at sufficient sample sizes and power, have successfully revealed biological insights for several complex traits. RICOPILI, an open-sourced Perl-based pipeline was developed to address the challenges of rapidly processing large-scale multi-cohort GWAS studies including quality control (QC), imputation and downstream analyses. The pipeline is computationally efficient with portability to a wide range of high-performance computing environments. RICOPILI was created as the Psychiatric Genomics Consortium pipeline for GWAS and adopted by other users. The pipeline features (i) technical and genomic QC in case-control and trio cohorts, (ii) genome-wide phasing and imputation, (iv) association analysis, (v) meta-analysis, (vi) polygenic risk scoring and (vii) replication analysis. Notably, a major differentiator from other GWAS pipelines, RICOPILI leverages on automated parallelization and cluster job management approaches for rapid production of imputed genome-wide data. A comprehensive meta-analysis of simulated GWAS data has been incorporated demonstrating each step of the pipeline. This includes all the associated visualization plots, to allow ease of data interpretation and manuscript preparation. Simulated GWAS datasets are also packaged with the pipeline for user training tutorials and developer work.

AVAILABILITY AND IMPLEMENTATION

RICOPILI has a flexible architecture to allow for ongoing development and incorporation of newer available algorithms and is adaptable to various HPC environments (QSUB, BSUB, SLURM and others). Specific links for genomic resources are either directly provided in this paper or via tutorials and external links. The central location hosting scripts and tutorials is found at this URL: https://sites.google.com/a/broadinstitute.org/RICOPILI/home.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

摘要

全基因组关联研究(GWAS)分析在足够的样本量和功效下,已经成功揭示了几个复杂特征的生物学见解。RICOPILI 是一个开源的基于 Perl 的管道,旨在解决快速处理大规模多队列 GWAS 研究的挑战,包括质量控制(QC)、插补和下游分析。该管道具有计算效率,并可移植到广泛的高性能计算环境中。RICOPILI 是作为精神疾病基因组学联盟的 GWAS 管道创建的,并被其他用户采用。该管道的特点是:(i)病例对照和三队列的技术和基因组 QC;(ii)全基因组定相和插补;(iv)关联分析;(v)荟萃分析;(vi)多基因风险评分;(vii)复制分析。值得注意的是,与其他 GWAS 管道相比,RICOPILI 利用自动化并行化和集群作业管理方法来快速生成已注记的全基因组数据。已经包含了对模拟 GWAS 数据的全面荟萃分析,展示了管道的每一个步骤。这包括所有相关的可视化图,以方便数据解释和手稿准备。模拟 GWAS 数据集也与管道一起打包,用于用户培训教程和开发人员工作。

可用性和实现

RICOPILI 具有灵活的架构,允许进行持续的开发,并纳入新的可用算法,并且适应各种高性能计算环境(QSUB、BSUB、SLURM 等)。基因组资源的特定链接要么直接在本文中提供,要么通过教程和外部链接提供。脚本和教程的中央位置可以在以下 URL 找到:https://sites.google.com/a/broadinstitute.org/RICOPILI/home。

补充信息

补充数据可在《生物信息学》在线获取。

相似文献

1
RICOPILI: Rapid Imputation for COnsortias PIpeLIne.RICOPILI:Consortium Pipeline 的快速推断。
Bioinformatics. 2020 Feb 1;36(3):930-933. doi: 10.1093/bioinformatics/btz633.
2
Molgenis-impute: imputation pipeline in a box.Molgenis-impute:一体化的插补流程。
BMC Res Notes. 2015 Aug 19;8:359. doi: 10.1186/s13104-015-1309-3.
3
Gimpute: an efficient genetic data imputation pipeline.Gimpute:一个高效的遗传数据插补流水线。
Bioinformatics. 2019 Apr 15;35(8):1433-1435. doi: 10.1093/bioinformatics/bty814.

引用本文的文献

本文引用的文献

3
Psychiatric Genomics: An Update and an Agenda.精神科基因组学:最新进展与议程
Am J Psychiatry. 2018 Jan 1;175(1):15-27. doi: 10.1176/appi.ajp.2017.17030283. Epub 2017 Oct 3.
5
Next-generation genotype imputation service and methods.下一代基因型填充服务和方法。
Nat Genet. 2016 Oct;48(10):1284-1287. doi: 10.1038/ng.3656. Epub 2016 Aug 29.
9
A global reference for human genetic variation.人类遗传变异的全球参考。
Nature. 2015 Oct 1;526(7571):68-74. doi: 10.1038/nature15393.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验