Key Laboratory of Herbage and Endemic Crop Biotechnology (Inner Mongolia University), Ministry of Education, College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, China.
Plant Cell Physiol. 2019 Jan 1;60(1):85-106. doi: 10.1093/pcp/pcy187.
Reaumuria trigyna is an endangered recretohalophyte and a small archaic feral shrub that is endemic to arid and semi-arid plateau regions of Inner Mongolia, China. Based on transcriptomic data, we isolated a high-affinity potassium transporter gene (RtHKT1) from R. trigyna, which encoded a plasma membrane-localized protein. RtHKT1 was rapidly up-regulated by high Na+ or low K+ and exhibited different tissue-specific expression patterns before and after stress treatment. Transgenic yeast showed tolerance to high Na+ or low K+, while transgenic Arabidopsis exhibited tolerance to high Na+ and sensitivity to high K+, or high Na+-low K+, confirming that Na+ tolerance in transgenic Arabidopsis depends on a sufficient external K+ concentration. Under external high Na+, high K+ and low K+ conditions, transgenic yeast accumulated more Na+-K+, Na+ and K+, while transgenic Arabidopsis accumulated less Na+-more K+, more Na+ and more Na+-K+, respectively, indicating that the ion transport properties of RtHKT1 depend on the external Na+-K+ environment. Salt stress induced up-regulation of some ion transporter genes (AtSOS1/AtHAK5/AtKUP5-6), as well as down-regulation of some genes (AtNHX1/AtAVP1/AtKUP9-12), revealing that multi-ion-transporter synergism maintains Na+/K+ homeostasis under salt stress in transgenic Arabidopsis. Overexpression of RtHKT1 enhanced K+ accumulation and prevented Na+ transport from roots to shoots, improved biomass accumulation and Chl content in salt-stressed transgenic Arabidopsis. The proline content and relative water content increased significantly, and some proline biosynthesis genes (AtP5CS1 and AtP5CS2) were also up-regulated in salt-stressed transgenic plants. These results suggest that RtHKT1 confers salt tolerance on transgenic Arabidopsis by maintaining Na+/K+ homeostasis and osmotic homeostasis.
三叶猪毛菜是一种濒危的返祖盐生植物,也是一种小型古老的野生灌木,仅在中国内蒙古干旱和半干旱高原地区有分布。基于转录组数据,我们从三叶猪毛菜中分离出一个高亲和力钾转运蛋白基因(RtHKT1),该基因编码一个定位于质膜的蛋白。RtHKT1 被高 Na+或低 K+快速上调,并在胁迫处理前后表现出不同的组织特异性表达模式。转基因酵母表现出对高 Na+或低 K+的耐受性,而转基因拟南芥表现出对高 Na+的耐受性和对高 K+或高 Na+-低 K+的敏感性,证实了转基因拟南芥的 Na+耐受性依赖于足够的外部 K+浓度。在外部高 Na+、高 K+和低 K+条件下,转基因酵母积累了更多的 Na+-K+、Na+和 K+,而转基因拟南芥则分别积累了较少的 Na+-更多 K+、更多的 Na+和更多的 Na+-K+,表明 RtHKT1 的离子转运特性取决于外部 Na+-K+环境。盐胁迫诱导一些离子转运基因(AtSOS1/AtHAK5/AtKUP5-6)的上调,以及一些基因(AtNHX1/AtAVP1/AtKUP9-12)的下调,表明多离子转运协同作用在盐胁迫下维持了转基因拟南芥的 Na+/K+稳态。过量表达 RtHKT1 增加了 K+的积累,阻止了 Na+从根部向地上部的运输,提高了盐胁迫下转基因拟南芥的生物量积累和 Chl 含量。脯氨酸含量和相对含水量显著增加,盐胁迫下转基因植物中的一些脯氨酸生物合成基因(AtP5CS1 和 AtP5CS2)也上调。这些结果表明,RtHKT1 通过维持 Na+/K+稳态和渗透稳态赋予转基因拟南芥耐盐性。