Suppr超能文献

一篇综述研究:计算技术在预测人类疾病中非 synonymous 单核苷酸变异影响方面的应用。

A review study: Computational techniques for expecting the impact of non-synonymous single nucleotide variants in human diseases.

机构信息

Systems and Information Department and Biomedical Informatics Group, Engineering Research Division, National Research Center, Giza, Egypt; Patent Office of Scientific Research Academy, Egypt.

Electronics and Communication Department, Faculty of Engineering, Zagazig University, Zagazig, Egypt.

出版信息

Gene. 2019 Jan 5;680:20-33. doi: 10.1016/j.gene.2018.09.028. Epub 2018 Sep 18.

Abstract

Non-Synonymous Single-Nucleotide Variants (nsSNVs) and mutations can create a diversity effect on proteins as changing genotype and phenotype, which interrupts its stability. The alterations in the protein stability may cause diseases like cancer. Discovering of nsSNVs and mutations can be a useful tool for diagnosing the disease at a beginning stage. Many studies introduced the various predicting singular and consensus tools that based on different Machine Learning Techniques (MLTs) using diverse datasets. Therefore, we introduce the current comprehensive review of the most popular and recent unique tools that predict pathogenic variations and Meta-tool that merge some of them for enhancing their predictive power. Also, we scanned the several types computational techniques in the state-of-the-art and methods for predicting the effect both of coding and noncoding variants. We then displayed, the protein stability predictors. We offer the details of the most common benchmark database for variations including the main predictive features used by the different methods. Finally, we address the most common fundamental criteria for performance assessment of predictive tools. This review is targeted at bioinformaticians attentive in the characterization of regulatory variants, geneticists, molecular biologists attentive in understanding more about the nature and effective role of such variants from a functional point of views, and clinicians who may hope to learn about variants in human associated with a specific disease and find out what to do next to uncover how they impact on the underlying mechanisms.

摘要

非 synonymous单核苷酸变异(nsSNVs)和突变可以对蛋白质产生多样性效应,改变基因型和表型,从而破坏其稳定性。蛋白质稳定性的改变可能导致癌症等疾病。发现 nsSNVs 和突变可以作为在疾病早期进行诊断的有用工具。许多研究介绍了基于不同机器学习技术(MLTs)并使用不同数据集的各种预测单因素和共识工具。因此,我们介绍了当前最流行和最新的独特工具的综合综述,这些工具可预测致病变异,并将一些元工具合并以提高其预测能力。此外,我们还扫描了最新的预测编码和非编码变异的影响的计算技术类型和方法。然后,我们展示了蛋白质稳定性预测器。我们详细介绍了最常见的变异基准数据库,包括不同方法使用的主要预测特征。最后,我们讨论了预测工具性能评估的最常见基本标准。本综述针对关注调控变异特征的生物信息学家、关注从功能角度了解此类变异本质和有效作用的遗传学家和分子生物学家,以及可能希望了解与特定疾病相关的人类变异并了解下一步该怎么做以揭示它们如何影响潜在机制的临床医生。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验