Suppr超能文献

扩张型心肌病中非同义单核苷酸变异的致病性预测

Pathogenicity prediction of non-synonymous single nucleotide variants in dilated cardiomyopathy.

作者信息

Mueller Sabine C, Backes Christina, Haas Jan, Katus Hugo A, Meder Benjamin, Meese Eckart, Keller Andreas

出版信息

Brief Bioinform. 2015 Sep;16(5):769-79. doi: 10.1093/bib/bbu054. Epub 2015 Jan 30.

Abstract

Non-synonymous single nucleotide variants (nsSNVs) in coding DNA regions can result in phenotypic differences between individuals; however, only some nsSNVs are causative for a certain disease. As just a fraction of respective nsSNVs is annotated in databases, computational biology tools are applied to predict the pathogenicity in silico. In addition to applications in oncology, novel molecular diagnostic tests have been developed for cardiovascular disorders as a leading cause of morbidity and mortality in industrialized nations. We explored the concordance and performance of 13 nsSNV pathogenicity prediction tools on panel sequencing results of dilated cardiomyopathy. The analyzed data set from the INHERITANCE study contained 842 nsSNVs discovered in 639 patients, screened for the full sequence of 76 genes related to cardiomyopathies. The single tools prediction revealed a surprisingly high heterogeneity and discordance based on the implemented prediction method. Known disease associations were not reported by the tools, limiting usability in clinics. Because different tools have different advantages, we combined their results. By clustering of correlated methods using similar prediction strategies and calculating a majority vote-based consensus, we found that the prediction accuracy and sensitivity can be further improved. Although challenges remain, different in silico tools bear the potential to predict the malignancy of nsSNVs, especially if different algorithms are combined. Most tools rely mainly on sequence features; beyond these, structural information is important to analyze the relationship of nsSNVs with disease phenotypes. Likewise, current tools consider single nsSNVs, which may, however, show a cumulative effect and turn neutral mutations in an ensemble into pathogenic variants.

摘要

编码DNA区域中的非同义单核苷酸变异(nsSNV)可导致个体间的表型差异;然而,只有一些nsSNV是特定疾病的病因。由于数据库中仅注释了各自nsSNV的一小部分,因此应用计算生物学工具在计算机上预测致病性。除了在肿瘤学中的应用外,还开发了针对心血管疾病的新型分子诊断测试,心血管疾病是工业化国家发病和死亡的主要原因。我们探讨了13种nsSNV致病性预测工具在扩张型心肌病panel测序结果上的一致性和性能。来自INHERITANCE研究的分析数据集包含在639名患者中发现的842个nsSNV,对与心肌病相关的76个基因的全序列进行了筛选。基于所实施的预测方法,单一工具的预测显示出惊人的高异质性和不一致性。这些工具未报告已知的疾病关联,限制了其在临床中的可用性。由于不同的工具具有不同的优势,我们将它们的结果进行了合并。通过使用相似的预测策略对相关方法进行聚类并计算基于多数投票的共识,我们发现预测准确性和敏感性可以进一步提高。尽管挑战依然存在,但不同的计算机工具具有预测nsSNV恶性程度的潜力,特别是如果将不同的算法结合起来。大多数工具主要依赖于序列特征;除此之外,结构信息对于分析nsSNV与疾病表型之间的关系也很重要。同样,当前的工具考虑的是单个nsSNV,然而,单个nsSNV可能会显示出累积效应,并将一组中的中性突变转变为致病变异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验