Suppr超能文献

容积调节性阴离子通道(VRAC)的分子生物学与生理学

Molecular Biology and Physiology of Volume-Regulated Anion Channel (VRAC).

作者信息

Osei-Owusu James, Yang Junhua, Vitery Maria Del Carmen, Qiu Zhaozhu

机构信息

Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.

Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States.

出版信息

Curr Top Membr. 2018;81:177-203. doi: 10.1016/bs.ctm.2018.07.005. Epub 2018 Aug 14.

Abstract

The Volume-Regulated Anion Channel (VRAC) is activated by cell swelling and plays a key role in cell volume regulation. VRAC is ubiquitously expressed in vertebrate cells and also implicated in many other physiological and cellular processes including fluid secretion, glutamate release, membrane potential regulation, cell proliferation, migration, and apoptosis. Although its biophysical properties have been well characterized, the molecular identity of VRAC remained a mystery for almost three decades. The field was transformed by recent discoveries showing that the leucine-rich repeat-containing protein 8A (LRRC8A, also named SWELL1) and its four other homologs form heteromeric VRAC channels. The composition of LRRC8 subunits determines channel properties and substrate selectivity of a large variety of different VRACs. Incorporating purified SWELL1-containing protein complexes into lipid bilayers is sufficient to reconstitute channel activities, a finding that supports the decrease in intracellular ionic strength as the mechanism of VRAC activation during cell swelling. Characterization of Swell1 knockout mice uncovers the important role of VRAC in T cell development, pancreatic β-cell glucose-stimulated insulin secretion, and adipocyte metabolic function. The ability to permeate organic osmolytes and metabolites is a major feature of VRAC. The list of VRAC substrates is expected to grow, now also including some cancer drugs and antibiotics even under non-cell swelling conditions. Therefore, a critical role of VRAC in drug resistance and cell-cell communication is emerging. This review summarizes the exciting recent progress on the structure-function relationship and physiology of VRAC and discusses key future questions to be solved.

摘要

容积调节性阴离子通道(VRAC)由细胞肿胀激活,在细胞容积调节中起关键作用。VRAC在脊椎动物细胞中广泛表达,还参与许多其他生理和细胞过程,包括液体分泌、谷氨酸释放、膜电位调节、细胞增殖、迁移和凋亡。尽管其生物物理特性已得到充分表征,但VRAC的分子身份近三十年来一直是个谜。最近的发现改变了这一领域,表明富含亮氨酸重复序列的蛋白8A(LRRC8A,也称为SWELL1)及其其他四个同源物形成异源VRAC通道。LRRC8亚基的组成决定了各种不同VRAC的通道特性和底物选择性。将纯化的含SWELL1蛋白复合物整合到脂质双层中足以重建通道活性,这一发现支持细胞肿胀期间细胞内离子强度降低作为VRAC激活机制。对Swell1基因敲除小鼠的表征揭示了VRAC在T细胞发育、胰腺β细胞葡萄糖刺激的胰岛素分泌和脂肪细胞代谢功能中的重要作用。渗透有机渗透物和代谢物的能力是VRAC的一个主要特征。即使在非细胞肿胀条件下,VRAC底物的清单预计也会增加,现在还包括一些抗癌药物和抗生素。因此,VRAC在耐药性和细胞间通讯中的关键作用正在显现。本综述总结了VRAC结构-功能关系和生理学方面最近令人兴奋的进展,并讨论了未来有待解决的关键问题。

相似文献

1
Molecular Biology and Physiology of Volume-Regulated Anion Channel (VRAC).
Curr Top Membr. 2018;81:177-203. doi: 10.1016/bs.ctm.2018.07.005. Epub 2018 Aug 14.
2
Biophysics and Physiology of the Volume-Regulated Anion Channel (VRAC)/Volume-Sensitive Outwardly Rectifying Anion Channel (VSOR).
Pflugers Arch. 2016 Mar;468(3):371-83. doi: 10.1007/s00424-015-1781-6. Epub 2016 Jan 6.
4
Intracellular and extracellular loops of LRRC8 are essential for volume-regulated anion channel function.
J Gen Physiol. 2018 Jul 2;150(7):1003-1015. doi: 10.1085/jgp.201812016. Epub 2018 May 31.
5
More than just a pressure relief valve: physiological roles of volume-regulated LRRC8 anion channels.
Biol Chem. 2019 Oct 25;400(11):1481-1496. doi: 10.1515/hsz-2019-0189.
6
LRRC8 Proteins Form Volume-Regulated Anion Channels that Sense Ionic Strength.
Cell. 2016 Jan 28;164(3):499-511. doi: 10.1016/j.cell.2015.12.031.
8
The identification of a volume-regulated anion channel: an amazing Odyssey.
Acta Physiol (Oxf). 2015 Apr;213(4):868-81. doi: 10.1111/apha.12450. Epub 2015 Jan 28.
9
Volume-regulated anion channel--a frenemy within the brain.
Pflugers Arch. 2016 Mar;468(3):421-41. doi: 10.1007/s00424-015-1765-6. Epub 2015 Dec 1.
10
VRAC: molecular identification as LRRC8 heteromers with differential functions.
Pflugers Arch. 2016 Mar;468(3):385-93. doi: 10.1007/s00424-015-1766-5. Epub 2015 Dec 3.

引用本文的文献

3
Piezo1 is an essential player in volume regulation of human glioblastoma cells.
J Physiol. 2025 Sep;603(17):4765-4784. doi: 10.1113/JP289215. Epub 2025 Aug 21.
4
Recent insights on the impact of SWELL1 on metabolic syndromes.
Front Pharmacol. 2025 Mar 21;16:1552176. doi: 10.3389/fphar.2025.1552176. eCollection 2025.
5
VRAC channel inhibition as a novel strategy for the treatment of ischemia-reperfusion injury.
Front Cell Dev Biol. 2024 Dec 23;12:1524723. doi: 10.3389/fcell.2024.1524723. eCollection 2024.
7
Regulation of volume-regulated anion channels alters sensitivity to platinum chemotherapy.
Sci Adv. 2024 Dec 13;10(50):eadr9364. doi: 10.1126/sciadv.adr9364.
8
De novo variants in LRRC8C resulting in constitutive channel activation cause a human multisystem disorder.
EMBO J. 2025 Jan;44(2):413-436. doi: 10.1038/s44318-024-00322-y. Epub 2024 Dec 2.
9
Astrocyte Regulation of Neuronal Function and Survival in Stroke Pathophysiology.
Adv Neurobiol. 2024;39:233-267. doi: 10.1007/978-3-031-64839-7_10.
10
The SWELL1 Channel Promotes Ischemic Brain Damage by Mediating Neuronal Swelling and Glutamate Toxicity.
Adv Sci (Weinh). 2024 Sep;11(36):e2401085. doi: 10.1002/advs.202401085. Epub 2024 Jul 26.

本文引用的文献

1
Cryo-EM structures of the human volume-regulated anion channel LRRC8.
Nat Struct Mol Biol. 2018 Sep;25(9):797-804. doi: 10.1038/s41594-018-0109-6. Epub 2018 Aug 20.
2
Structure of the human volume regulated anion channel.
Elife. 2018 Aug 10;7:e38461. doi: 10.7554/eLife.38461.
3
Structure of a volume-regulated anion channel of the LRRC8 family.
Nature. 2018 Jun;558(7709):254-259. doi: 10.1038/s41586-018-0134-y. Epub 2018 May 16.
4
SWELL1 is a glucose sensor regulating β-cell excitability and systemic glycaemia.
Nat Commun. 2018 Jan 25;9(1):367. doi: 10.1038/s41467-017-02664-0.
5
Gliotransmission: Beyond Black-and-White.
J Neurosci. 2018 Jan 3;38(1):14-25. doi: 10.1523/JNEUROSCI.0017-17.2017.
6
Multiple Lines of Evidence Indicate That Gliotransmission Does Not Occur under Physiological Conditions.
J Neurosci. 2018 Jan 3;38(1):3-13. doi: 10.1523/JNEUROSCI.0016-17.2017.
7
The organic anion transporter SLCO2A1 constitutes the core component of the Maxi-Cl channel.
EMBO J. 2017 Nov 15;36(22):3309-3324. doi: 10.15252/embj.201796685. Epub 2017 Oct 18.
8
Leucine-rich repeat-containing 8B protein is associated with the endoplasmic reticulum Ca leak in HEK293 cells.
J Cell Sci. 2017 Nov 15;130(22):3818-3828. doi: 10.1242/jcs.203646. Epub 2017 Oct 2.
9
Induction of adipose and hepatic SWELL1 expression is required for maintaining systemic insulin-sensitivity in obesity.
Channels (Austin). 2017 Nov 2;11(6):673-677. doi: 10.1080/19336950.2017.1373225. Epub 2017 Oct 5.
10
Subunit-dependent oxidative stress sensitivity of LRRC8 volume-regulated anion channels.
J Physiol. 2017 Nov 1;595(21):6719-6733. doi: 10.1113/JP274795. Epub 2017 Sep 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验