Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland.
Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
J Neurosci. 2018 Jan 3;38(1):14-25. doi: 10.1523/JNEUROSCI.0017-17.2017.
Astrocytes are highly complex cells with many emerging putative roles in brain function. Of these, gliotransmission (active information transfer from glia to neurons) has probably the widest implications on our understanding of how the brain works: do astrocytes really contribute to information processing within the neural circuitry? "Positive evidence" for this stems from work of multiple laboratories reporting many examples of modulatory chemical signaling from astrocytes to neurons in the timeframe of hundreds of milliseconds to several minutes. This signaling involves, but is not limited to, Ca-dependent vesicular transmitter release, and results in a variety of regulatory effects at synapses in many circuits that are abolished by preventing Ca elevations or blocking exocytosis selectively in astrocytes. In striking contradiction, methodologically advanced studies by a few laboratories produced "negative evidence," triggering a heated debate on the actual existence and properties of gliotransmission. In this context, a skeptics' camp arose, eager to dismiss the whole positive evidence based on a number of assumptions behind the negative data, such as the following: (1) deleting a single Ca release pathway (IP3R2) removes all the sources for Ca-dependent gliotransmission; (2) stimulating a transgenically expressed Gq-GPCR (MrgA1) mimics the physiological Ca signaling underlying gliotransmitter release; (3) age-dependent downregulation of an endogenous GPCR (mGluR5) questions gliotransmitter release in adulthood; and (4) failure by transcriptome analysis to detect vGluts or canonical synaptic SNAREs in astrocytes proves inexistence/functional irrelevance of vesicular gliotransmitter release. We here discuss how the above assumptions are likely wrong and oversimplistic. In light of the most recent literature, we argue that gliotransmission is a more complex phenomenon than originally thought, possibly consisting of multiple forms and signaling processes, whose correct study and understanding require more sophisticated tools and finer scientific experiments than done until today. Under this perspective, the opposing camps can be reconciled and the field moved forward. Along the path, a more cautious mindset and an attitude to open discussion and mutual respect between opponent laboratories will be good companions..
星形胶质细胞是高度复杂的细胞,具有许多新兴的潜在作用于大脑功能的角色。在这些角色中,神经胶质传递(从胶质细胞到神经元的主动信息传递)可能对我们理解大脑的工作方式具有最广泛的影响:星形胶质细胞真的有助于神经回路中的信息处理吗?“阳性证据”源于多个实验室的工作,这些实验室报告了许多在数百毫秒到数分钟的时间范围内,来自星形胶质细胞到神经元的调节性化学信号的例子。这种信号涉及但不限于 Ca 依赖性囊泡递质释放,并导致许多回路中突触的各种调节效应,这些效应可通过防止 Ca 升高或选择性地阻止星形胶质细胞中的胞吐作用而被消除。与此形成鲜明对比的是,少数几个实验室采用方法学上先进的研究产生了“阴性证据”,引发了一场关于神经胶质传递的实际存在和性质的激烈争论。在这种情况下,出现了持怀疑态度的阵营,他们渴望根据负面数据背后的一些假设,否定整个阳性证据,例如以下几点:(1)删除单个 Ca 释放途径(IP3R2)会消除所有与 Ca 依赖性神经胶质传递相关的来源;(2)刺激转基因表达的 Gq-GPCR(MrgA1)模拟了神经递质释放背后的生理 Ca 信号;(3)内源性 GPCR(mGluR5)的年龄依赖性下调质疑成年期的神经递质释放;(4)转录组分析未能检测到星形胶质细胞中的 vGluts 或经典突触 SNAREs 证明了囊泡神经递质释放的不存在/功能无关性。我们在这里讨论了上述假设如何可能是错误和过于简单化的。根据最新的文献,我们认为神经胶质传递是一个比最初想象的更为复杂的现象,可能由多种形式和信号传递过程组成,正确研究和理解需要比迄今为止更复杂的工具和更精细的科学实验。从这个角度来看,可以调和对立阵营,并推动该领域向前发展。在这个过程中,一个更谨慎的思维方式以及在对手实验室之间开放讨论和相互尊重的态度将是很好的伴侣。