Suppr超能文献

神经递质传递:超越非黑即白。

Gliotransmission: Beyond Black-and-White.

机构信息

Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland.

Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland

出版信息

J Neurosci. 2018 Jan 3;38(1):14-25. doi: 10.1523/JNEUROSCI.0017-17.2017.

Abstract

Astrocytes are highly complex cells with many emerging putative roles in brain function. Of these, gliotransmission (active information transfer from glia to neurons) has probably the widest implications on our understanding of how the brain works: do astrocytes really contribute to information processing within the neural circuitry? "Positive evidence" for this stems from work of multiple laboratories reporting many examples of modulatory chemical signaling from astrocytes to neurons in the timeframe of hundreds of milliseconds to several minutes. This signaling involves, but is not limited to, Ca-dependent vesicular transmitter release, and results in a variety of regulatory effects at synapses in many circuits that are abolished by preventing Ca elevations or blocking exocytosis selectively in astrocytes. In striking contradiction, methodologically advanced studies by a few laboratories produced "negative evidence," triggering a heated debate on the actual existence and properties of gliotransmission. In this context, a skeptics' camp arose, eager to dismiss the whole positive evidence based on a number of assumptions behind the negative data, such as the following: (1) deleting a single Ca release pathway (IP3R2) removes all the sources for Ca-dependent gliotransmission; (2) stimulating a transgenically expressed Gq-GPCR (MrgA1) mimics the physiological Ca signaling underlying gliotransmitter release; (3) age-dependent downregulation of an endogenous GPCR (mGluR5) questions gliotransmitter release in adulthood; and (4) failure by transcriptome analysis to detect vGluts or canonical synaptic SNAREs in astrocytes proves inexistence/functional irrelevance of vesicular gliotransmitter release. We here discuss how the above assumptions are likely wrong and oversimplistic. In light of the most recent literature, we argue that gliotransmission is a more complex phenomenon than originally thought, possibly consisting of multiple forms and signaling processes, whose correct study and understanding require more sophisticated tools and finer scientific experiments than done until today. Under this perspective, the opposing camps can be reconciled and the field moved forward. Along the path, a more cautious mindset and an attitude to open discussion and mutual respect between opponent laboratories will be good companions..

摘要

星形胶质细胞是高度复杂的细胞,具有许多新兴的潜在作用于大脑功能的角色。在这些角色中,神经胶质传递(从胶质细胞到神经元的主动信息传递)可能对我们理解大脑的工作方式具有最广泛的影响:星形胶质细胞真的有助于神经回路中的信息处理吗?“阳性证据”源于多个实验室的工作,这些实验室报告了许多在数百毫秒到数分钟的时间范围内,来自星形胶质细胞到神经元的调节性化学信号的例子。这种信号涉及但不限于 Ca 依赖性囊泡递质释放,并导致许多回路中突触的各种调节效应,这些效应可通过防止 Ca 升高或选择性地阻止星形胶质细胞中的胞吐作用而被消除。与此形成鲜明对比的是,少数几个实验室采用方法学上先进的研究产生了“阴性证据”,引发了一场关于神经胶质传递的实际存在和性质的激烈争论。在这种情况下,出现了持怀疑态度的阵营,他们渴望根据负面数据背后的一些假设,否定整个阳性证据,例如以下几点:(1)删除单个 Ca 释放途径(IP3R2)会消除所有与 Ca 依赖性神经胶质传递相关的来源;(2)刺激转基因表达的 Gq-GPCR(MrgA1)模拟了神经递质释放背后的生理 Ca 信号;(3)内源性 GPCR(mGluR5)的年龄依赖性下调质疑成年期的神经递质释放;(4)转录组分析未能检测到星形胶质细胞中的 vGluts 或经典突触 SNAREs 证明了囊泡神经递质释放的不存在/功能无关性。我们在这里讨论了上述假设如何可能是错误和过于简单化的。根据最新的文献,我们认为神经胶质传递是一个比最初想象的更为复杂的现象,可能由多种形式和信号传递过程组成,正确研究和理解需要比迄今为止更复杂的工具和更精细的科学实验。从这个角度来看,可以调和对立阵营,并推动该领域向前发展。在这个过程中,一个更谨慎的思维方式以及在对手实验室之间开放讨论和相互尊重的态度将是很好的伴侣。

相似文献

1
Gliotransmission: Beyond Black-and-White.
J Neurosci. 2018 Jan 3;38(1):14-25. doi: 10.1523/JNEUROSCI.0017-17.2017.
2
Multiple Lines of Evidence Indicate That Gliotransmission Does Not Occur under Physiological Conditions.
J Neurosci. 2018 Jan 3;38(1):3-13. doi: 10.1523/JNEUROSCI.0016-17.2017.
3
Neuron-astrocyte signaling is preserved in the aging brain.
Glia. 2017 Apr;65(4):569-580. doi: 10.1002/glia.23112. Epub 2017 Jan 28.
4
Astroglial excitability and gliotransmission: an appraisal of Ca2+ as a signalling route.
ASN Neuro. 2012 Mar 22;4(2):e00080. doi: 10.1042/AN20110061.
5
Gliotransmission and the tripartite synapse.
Adv Exp Med Biol. 2012;970:307-31. doi: 10.1007/978-3-7091-0932-8_14.
6
mGluR5 stimulates gliotransmission in the nucleus accumbens.
Proc Natl Acad Sci U S A. 2007 Feb 6;104(6):1995-2000. doi: 10.1073/pnas.0609408104. Epub 2007 Jan 26.
7
Astrocyte calcium signal and gliotransmission in human brain tissue.
Cereb Cortex. 2013 May;23(5):1240-6. doi: 10.1093/cercor/bhs122. Epub 2012 May 10.
8
Communication between neurons and astrocytes: relevance to the modulation of synaptic and network activity.
J Neurochem. 2009 Feb;108(3):533-44. doi: 10.1111/j.1471-4159.2008.05830.x.
9
Amyloid pathology disrupts gliotransmitter release in astrocytes.
PLoS Comput Biol. 2022 Aug 1;18(8):e1010334. doi: 10.1371/journal.pcbi.1010334. eCollection 2022 Aug.
10
Lateral regulation of synaptic transmission by astrocytes.
Neuroscience. 2016 May 26;323:62-6. doi: 10.1016/j.neuroscience.2015.02.036. Epub 2015 Feb 27.

引用本文的文献

2
Striatal astrocytes modulate behavioral flexibility and whole-body metabolism in mice.
Nat Commun. 2025 Jul 7;16(1):5417. doi: 10.1038/s41467-025-60968-y.
3
Astrocytes at the heart of sleep: from genes to network dynamics.
Cell Mol Life Sci. 2025 May 21;82(1):207. doi: 10.1007/s00018-025-05671-3.
4
Central amygdala neuroimmune signaling in alcohol use disorder.
Addict Neurosci. 2025 Mar;14. doi: 10.1016/j.addicn.2024.100194. Epub 2024 Dec 21.
5
Astrocytic G Protein-Coupled Receptors in Drug Addiction.
Engineering (Beijing). 2025 Jan;44:256-265. doi: 10.1016/j.eng.2024.12.016. Epub 2024 Dec 25.
6
Editorial: Advances in volume electron microscopy for brain imaging: methods, applications, and affordability.
Front Neurosci. 2025 Feb 5;19:1561852. doi: 10.3389/fnins.2025.1561852. eCollection 2025.
7
Chemogenetic activation of astrocytes modulates sleep-wakefulness states in a brain region-dependent manner.
Sleep Adv. 2024 Dec 17;5(1):zpae091. doi: 10.1093/sleepadvances/zpae091. eCollection 2024.
8
A spatial threshold for astrocyte calcium surge.
Elife. 2024 Dec 16;12:RP90046. doi: 10.7554/eLife.90046.
9
Astrocytes release ATP/ADP and glutamate in flashes via vesicular exocytosis.
Mol Psychiatry. 2025 Jun;30(6):2475-2489. doi: 10.1038/s41380-024-02851-8. Epub 2024 Nov 22.
10
A neurotransmitter atlas of males and hermaphrodites.
Elife. 2024 Oct 18;13:RP95402. doi: 10.7554/eLife.95402.

本文引用的文献

1
Neural Circuit-Specialized Astrocytes: Transcriptomic, Proteomic, Morphological, and Functional Evidence.
Neuron. 2017 Aug 2;95(3):531-549.e9. doi: 10.1016/j.neuron.2017.06.029. Epub 2017 Jul 14.
2
Three-dimensional Ca imaging advances understanding of astrocyte biology.
Science. 2017 May 19;356(6339). doi: 10.1126/science.aai8185.
3
Septal Cholinergic Neuromodulation Tunes the Astrocyte-Dependent Gating of Hippocampal NMDA Receptors to Wakefulness.
Neuron. 2017 May 17;94(4):840-854.e7. doi: 10.1016/j.neuron.2017.04.021. Epub 2017 May 4.
4
Amines, Astrocytes, and Arousal.
Neuron. 2017 Apr 19;94(2):228-231. doi: 10.1016/j.neuron.2017.03.035.
5
Transient Opening of the Mitochondrial Permeability Transition Pore Induces Microdomain Calcium Transients in Astrocyte Processes.
Neuron. 2017 Feb 8;93(3):587-605.e7. doi: 10.1016/j.neuron.2016.12.034. Epub 2017 Jan 26.
6
Astrocytic IP Rs: Contribution to Ca signalling and hippocampal LTP.
Glia. 2017 Mar;65(3):502-513. doi: 10.1002/glia.23107. Epub 2017 Jan 7.
8
Ca transients in astrocyte fine processes occur via Ca influx in the adult mouse hippocampus.
Glia. 2016 Dec;64(12):2093-2103. doi: 10.1002/glia.23042. Epub 2016 Aug 1.
9
The homeostatic astroglia emerges from evolutionary specialization of neural cells.
Philos Trans R Soc Lond B Biol Sci. 2016 Aug 5;371(1700). doi: 10.1098/rstb.2015.0428.
10
Astrocytes regulate cortical state switching in vivo.
Proc Natl Acad Sci U S A. 2016 May 10;113(19):E2675-84. doi: 10.1073/pnas.1520759113. Epub 2016 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验