Suppr超能文献

语言、多重需求和默认模式网络之间的稳健分离:来自效应量的区域间相关性的证据。

A robust dissociation among the language, multiple demand, and default mode networks: Evidence from inter-region correlations in effect size.

机构信息

Massachusetts Institute of Technology, USA.

Massachusetts Institute of Technology, USA.

出版信息

Neuropsychologia. 2018 Oct;119:501-511. doi: 10.1016/j.neuropsychologia.2018.09.011. Epub 2018 Sep 20.

Abstract

Complex cognitive processes, including language, rely on multiple mental operations that are carried out by several large-scale functional networks in the frontal, temporal, and parietal association cortices of the human brain. The central division of cognitive labor is between two fronto-parietal bilateral networks: (a) the multiple demand (MD) network, which supports executive processes, such as working memory and cognitive control, and is engaged by diverse task domains, including language, especially when comprehension gets difficult; and (b) the default mode network (DMN), which supports introspective processes, such as mind wandering, and is active when we are not engaged in processing external stimuli. These two networks are strongly dissociated in both their functional profiles and their patterns of activity fluctuations during naturalistic cognition. Here, we focus on the functional relationship between these two networks and a third network: (c) the fronto-temporal left-lateralized "core" language network, which is selectively recruited by linguistic processing. Is the language network distinct and dissociated from both the MD network and the DMN, or is it synchronized and integrated with one or both of them? Recent work has provided evidence for a dissociation between the language network and the MD network. However, the relationship between the language network and the DMN is less clear, with some evidence for coordinated activity patterns and similar response profiles, perhaps due to the role of both in semantic processing. Here we use a novel fMRI approach to examine the relationship among the three networks: we measure the strength of activations in different language, MD, and DMN regions to functional contrasts typically used to identify each network, and then test which regions co-vary in their contrast effect sizes across 60 individuals. We find that effect sizes correlate strongly within each network (e.g., one language region and another language region, or one DMN region and another DMN region), but show little or no correlation for region pairs across networks (e.g., a language region and a DMN region). Thus, using our novel method, we replicate the language/MD network dissociation discovered previously with other approaches, and also show that the language network is robustly dissociated from the DMN, overall suggesting that these three networks contribute to high-level cognition in different ways and, perhaps, support distinct computations. Inter-individual differences in effect sizes therefore do not simply reflect general differences in vascularization or attention, but exhibit sensitivity to the functional architecture of the brain. The strength of activation in each network can thus be probed separately in studies that attempt to link neural variability to behavioral or genetic variability.

摘要

复杂的认知过程,包括语言,依赖于多个心理操作,这些操作由人类大脑额叶、颞叶和顶叶联合皮质中的几个大规模功能网络执行。认知劳动的核心分工是在两个额顶双侧网络之间:(a) 多需求 (MD) 网络,支持工作记忆和认知控制等执行过程,并且涉及多种任务领域,包括语言,尤其是在理解变得困难时;以及 (b) 默认模式网络 (DMN),支持内省过程,如思维漫游,当我们不处理外部刺激时它就会活跃。这两个网络在其功能特征和在自然认知过程中活动波动模式方面具有强烈的分离。在这里,我们专注于这两个网络与第三个网络之间的功能关系:(c) 额颞左侧“核心”语言网络,它是语言处理选择性招募的。语言网络与 MD 网络和 DMN 网络是否不同且分离,或者它与一个或两个网络同步和整合?最近的工作为语言网络与 MD 网络之间的分离提供了证据。然而,语言网络与 DMN 之间的关系不太清楚,有些证据表明它们具有协调的活动模式和相似的反应特征,这可能是由于两者都参与了语义处理。在这里,我们使用一种新的 fMRI 方法来研究这三个网络之间的关系:我们测量不同语言、MD 和 DMN 区域在典型用于识别每个网络的功能对比中的激活强度,然后测试在 60 个人中,哪些区域在其对比效果大小上共同变化。我们发现,每个网络内的效应大小高度相关(例如,一个语言区域和另一个语言区域,或一个 DMN 区域和另一个 DMN 区域),但网络之间的区域对的效应大小几乎没有相关性(例如,一个语言区域和一个 DMN 区域)。因此,使用我们的新方法,我们复制了以前使用其他方法发现的语言/MD 网络分离,并且还表明语言网络与 DMN 强烈分离,总体而言,这表明这三个网络以不同的方式促进高级认知,并且可能支持不同的计算。因此,个体间效应大小的差异并不仅仅反映了血管化或注意力的一般差异,而是表现出对大脑功能结构的敏感性。在试图将神经可变性与行为或遗传可变性联系起来的研究中,可以分别探测每个网络的激活强度。

相似文献

1
A robust dissociation among the language, multiple demand, and default mode networks: Evidence from inter-region correlations in effect size.
Neuropsychologia. 2018 Oct;119:501-511. doi: 10.1016/j.neuropsychologia.2018.09.011. Epub 2018 Sep 20.
2
Domain-General Brain Regions Do Not Track Linguistic Input as Closely as Language-Selective Regions.
J Neurosci. 2017 Oct 11;37(41):9999-10011. doi: 10.1523/JNEUROSCI.3642-16.2017. Epub 2017 Sep 4.
3
The Domain-General Multiple Demand (MD) Network Does Not Support Core Aspects of Language Comprehension: A Large-Scale fMRI Investigation.
J Neurosci. 2020 Jun 3;40(23):4536-4550. doi: 10.1523/JNEUROSCI.2036-19.2020. Epub 2020 Apr 21.
4
Effects of task complexity and age-differences on task-related functional connectivity of attentional networks.
Neuropsychologia. 2018 Jun;114:50-64. doi: 10.1016/j.neuropsychologia.2018.04.013. Epub 2018 Apr 12.
7
Functional connectivity within and between intrinsic brain networks correlates with trait mind wandering.
Neuropsychologia. 2017 Aug;103:140-153. doi: 10.1016/j.neuropsychologia.2017.07.006. Epub 2017 Jul 10.
8
Individual Variability in Performance Reflects Selectivity of the Multiple Demand Network among Children and Adults.
J Neurosci. 2023 Mar 15;43(11):1940-1951. doi: 10.1523/JNEUROSCI.1460-22.2023. Epub 2023 Feb 7.
9
A functional dissociation between language and multiple-demand systems revealed in patterns of BOLD signal fluctuations.
J Neurophysiol. 2014 Sep 1;112(5):1105-18. doi: 10.1152/jn.00884.2013. Epub 2014 May 28.
10
Default Mode Dynamics for Global Functional Integration.
J Neurosci. 2015 Nov 18;35(46):15254-62. doi: 10.1523/JNEUROSCI.2135-15.2015.

引用本文的文献

1
Subject-specific Functional ROIs Enhance Reliability in Language FMRI.
Clin Neuroradiol. 2025 Jul 9. doi: 10.1007/s00062-025-01534-3.
2
Contributions of the multiple demand network to emergent and skilled reading.
Sci Rep. 2025 Jul 1;15(1):20878. doi: 10.1038/s41598-025-05756-w.
3
Constructed languages are processed by the same brain mechanisms as natural languages.
Proc Natl Acad Sci U S A. 2025 Mar 25;122(12):e2313473122. doi: 10.1073/pnas.2313473122. Epub 2025 Mar 17.
5
A Novel Directed Seed-Based Connectivity Analysis Toolbox Applied to Human and Marmoset Resting-State FMRI.
J Neurosci. 2024 Nov 6;44(45):e0389242024. doi: 10.1523/JNEUROSCI.0389-24.2024.
6
Cortical cognitive processing during reading captured using functional-near infrared spectroscopy.
Sci Rep. 2024 Aug 22;14(1):19483. doi: 10.1038/s41598-024-69630-x.
8
Shared functional specialization in transformer-based language models and the human brain.
Nat Commun. 2024 Jun 29;15(1):5523. doi: 10.1038/s41467-024-49173-5.
9
Linguistic inputs must be syntactically parsable to fully engage the language network.
bioRxiv. 2024 Jun 21:2024.06.21.599332. doi: 10.1101/2024.06.21.599332.
10
The Language Network Reliably "Tracks" Naturalistic Meaningful Nonverbal Stimuli.
Neurobiol Lang (Camb). 2024 Jun 3;5(2):385-408. doi: 10.1162/nol_a_00135. eCollection 2024.

本文引用的文献

2
Functionally distinct language and Theory of Mind networks are synchronized at rest and during language comprehension.
J Neurophysiol. 2019 Apr 1;121(4):1244-1265. doi: 10.1152/jn.00619.2018. Epub 2019 Jan 2.
3
High-level language processing regions are not engaged in action observation or imitation.
J Neurophysiol. 2018 Nov 1;120(5):2555-2570. doi: 10.1152/jn.00222.2018. Epub 2018 Aug 29.
4
Duality of Function: Activation for Meaningless Nonwords and Semantic Codes in the Same Brain Areas.
Cereb Cortex. 2018 Jul 1;28(7):2516-2524. doi: 10.1093/cercor/bhy053.
5
Interpreting and Utilising Intersubject Variability in Brain Function.
Trends Cogn Sci. 2018 Jun;22(6):517-530. doi: 10.1016/j.tics.2018.03.003. Epub 2018 Mar 30.
6
Gamma and beta bursts during working memory readout suggest roles in its volitional control.
Nat Commun. 2018 Jan 26;9(1):394. doi: 10.1038/s41467-017-02791-8.
8
Domain-General Brain Regions Do Not Track Linguistic Input as Closely as Language-Selective Regions.
J Neurosci. 2017 Oct 11;37(41):9999-10011. doi: 10.1523/JNEUROSCI.3642-16.2017. Epub 2017 Sep 4.
9
Thalamic control of functional cortical connectivity.
Curr Opin Neurobiol. 2017 Jun;44:127-131. doi: 10.1016/j.conb.2017.04.001. Epub 2017 May 6.
10
Top-down control of cortical gamma-band communication via pulvinar induced phase shifts in the alpha rhythm.
PLoS Comput Biol. 2017 May 4;13(5):e1005519. doi: 10.1371/journal.pcbi.1005519. eCollection 2017 May.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验