Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08540, USA.
Department of Computer Science, Princeton University, Princeton, NJ, 08540, USA.
Nat Commun. 2024 Jun 29;15(1):5523. doi: 10.1038/s41467-024-49173-5.
When processing language, the brain is thought to deploy specialized computations to construct meaning from complex linguistic structures. Recently, artificial neural networks based on the Transformer architecture have revolutionized the field of natural language processing. Transformers integrate contextual information across words via structured circuit computations. Prior work has focused on the internal representations ("embeddings") generated by these circuits. In this paper, we instead analyze the circuit computations directly: we deconstruct these computations into the functionally-specialized "transformations" that integrate contextual information across words. Using functional MRI data acquired while participants listened to naturalistic stories, we first verify that the transformations account for considerable variance in brain activity across the cortical language network. We then demonstrate that the emergent computations performed by individual, functionally-specialized "attention heads" differentially predict brain activity in specific cortical regions. These heads fall along gradients corresponding to different layers and context lengths in a low-dimensional cortical space.
在处理语言时,大脑被认为会部署专门的计算来从复杂的语言结构中构建意义。最近,基于转换器架构的人工神经网络彻底改变了自然语言处理领域。转换器通过结构化电路计算在单词之间集成上下文信息。之前的工作主要集中在这些电路生成的内部表示(“嵌入”)上。在本文中,我们转而直接分析电路计算:我们将这些计算分解为功能专门化的“转换”,这些转换在单词之间集成上下文信息。我们使用参与者在听自然故事时采集的功能磁共振成像数据,首先验证这些转换可以解释皮质语言网络中大脑活动的大量差异。然后,我们证明单个功能专门化的“注意力头”执行的涌现计算可以不同程度地预测特定皮质区域的大脑活动。这些头沿着与低维皮质空间中的不同层和上下文长度相对应的梯度分布。