Suppr超能文献

Mcm2-Ctf4-Polα 轴促进亲本组蛋白 H3-H4 向滞后链转移。

The Mcm2-Ctf4-Polα Axis Facilitates Parental Histone H3-H4 Transfer to Lagging Strands.

机构信息

Institute for Cancer Genetics, Department of Pediatrics and Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.

MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.

出版信息

Mol Cell. 2018 Oct 4;72(1):140-151.e3. doi: 10.1016/j.molcel.2018.09.001. Epub 2018 Sep 20.

Abstract

Although essential for epigenetic inheritance, the transfer of parental histone (H3-H4) tetramers that contain epigenetic modifications to replicating DNA strands is poorly understood. Here, we show that the Mcm2-Ctf4-Polα axis facilitates the transfer of parental (H3-H4) tetramers to lagging-strand DNA at replication forks. Mutating the conserved histone-binding domain of the Mcm2 subunit of the CMG (Cdc45-MCM-GINS) DNA helicase, which translocates along the leading-strand template, results in a marked enrichment of parental (H3-H4) on leading strand, due to the impairment of the transfer of parental (H3-H4) to lagging strands. Similar effects are observed in Ctf4 and Polα primase mutants that disrupt the connection of the CMG helicase to Polα that resides on lagging-strand template. Our results support a model whereby parental (H3-H4) complexes displaced from nucleosomes by DNA unwinding at replication forks are transferred by the CMG-Ctf4-Polα complex to lagging-strand DNA for nucleosome assembly at the original location.

摘要

尽管组蛋白(H3-H4)四聚体的转移对于表观遗传遗传至关重要,但对于复制 DNA 链中含有表观遗传修饰的亲本组蛋白(H3-H4)四聚体的转移知之甚少。在这里,我们表明 Mcm2-Ctf4-Polα 轴有助于将亲本(H3-H4)四聚体转移到复制叉处的滞后链 DNA 上。突变 Cdc45-MCM-GINS(CMG)DNA 解旋酶 Mcm2 亚基的保守组蛋白结合域,该亚基沿前导链模板易位,会导致亲本(H3-H4)在前导链上明显富集,这是由于亲本(H3-H4)向滞后链的转移受损。在 Ctf4 和 Polα 引发酶突变体中也观察到类似的影响,这些突变体破坏了位于滞后链模板上的 Polα 与 CMG 解旋酶的连接。我们的结果支持这样一种模型,即通过 CMG-Ctf4-Polα 复合物将在复制叉处由 DNA 解旋从核小体中置换出的亲本(H3-H4)复合物转移到滞后链 DNA 上,以便在原始位置进行核小体组装。

相似文献

1
The Mcm2-Ctf4-Polα Axis Facilitates Parental Histone H3-H4 Transfer to Lagging Strands.
Mol Cell. 2018 Oct 4;72(1):140-151.e3. doi: 10.1016/j.molcel.2018.09.001. Epub 2018 Sep 20.
2
DNA polymerase delta governs parental histone transfer to DNA replication lagging strand.
Proc Natl Acad Sci U S A. 2024 May 14;121(20):e2400610121. doi: 10.1073/pnas.2400610121. Epub 2024 May 7.
3
The PCNA-Pol δ complex couples lagging strand DNA synthesis to parental histone transfer for epigenetic inheritance.
Sci Adv. 2024 Jun 7;10(23):eadn5175. doi: 10.1126/sciadv.adn5175. Epub 2024 Jun 5.
4
The N-terminus of Spt16 anchors FACT to MCM2-7 for parental histone recycling.
Nucleic Acids Res. 2023 Nov 27;51(21):11549-11567. doi: 10.1093/nar/gkad846.
6
A mechanism for preventing asymmetric histone segregation onto replicating DNA strands.
Science. 2018 Sep 28;361(6409):1386-1389. doi: 10.1126/science.aat8849. Epub 2018 Aug 16.
7
Parental histone deposition on the replicated strands promotes error-free DNA damage tolerance and regulates drug resistance.
Genes Dev. 2022 Feb 1;36(3-4):167-179. doi: 10.1101/gad.349207.121. Epub 2022 Feb 3.
8
POLE3-POLE4 Is a Histone H3-H4 Chaperone that Maintains Chromatin Integrity during DNA Replication.
Mol Cell. 2018 Oct 4;72(1):112-126.e5. doi: 10.1016/j.molcel.2018.08.043. Epub 2018 Sep 11.
9
Coordination of histone chaperones for parental histone segregation and epigenetic inheritance.
Genes Dev. 2024 Mar 22;38(3-4):189-204. doi: 10.1101/gad.351278.123.

引用本文的文献

1
Faithful inheritance: Parental histone recycling and epigenetic memory in fission yeast.
Cell Insight. 2025 Aug 8;4(5):100275. doi: 10.1016/j.cellin.2025.100275. eCollection 2025 Oct.
2
3
DNA polymerase α-primase can function as a translesion DNA polymerase.
bioRxiv. 2025 Jul 2:2025.07.02.662785. doi: 10.1101/2025.07.02.662785.
5
Insights into the synchronization between DNA replication and parental histone recycling.
Biochem Soc Trans. 2025 Jun 30;53(3):547-554. doi: 10.1042/BST20253014.
6
Always on the Move: Overview on Chromatin Dynamics within Nuclear Processes.
Biochemistry. 2025 May 20;64(10):2138-2153. doi: 10.1021/acs.biochem.5c00114. Epub 2025 May 1.
7
The Yeast HMGB Protein Hmo1 Is a Multifaceted Regulator of DNA Damage Tolerance.
Int J Mol Sci. 2025 Apr 1;26(7):3255. doi: 10.3390/ijms26073255.
8
A Rfa1-MN-based system reveals new factors involved in the rescue of broken replication forks.
PLoS Genet. 2025 Apr 1;21(4):e1011405. doi: 10.1371/journal.pgen.1011405. eCollection 2025 Apr.

本文引用的文献

1
MCM2 promotes symmetric inheritance of modified histones during DNA replication.
Science. 2018 Sep 28;361(6409):1389-1392. doi: 10.1126/science.aau0294. Epub 2018 Aug 16.
2
A mechanism for preventing asymmetric histone segregation onto replicating DNA strands.
Science. 2018 Sep 28;361(6409):1386-1389. doi: 10.1126/science.aat8849. Epub 2018 Aug 16.
4
The mechanism of eukaryotic CMG helicase activation.
Nature. 2018 Mar 8;555(7695):265-268. doi: 10.1038/nature25787. Epub 2018 Feb 28.
5
Pivotal roles of PCNA loading and unloading in heterochromatin function.
Proc Natl Acad Sci U S A. 2018 Feb 27;115(9):E2030-E2039. doi: 10.1073/pnas.1721573115. Epub 2018 Feb 13.
6
Replication-Coupled Nucleosome Assembly in the Passage of Epigenetic Information and Cell Identity.
Trends Biochem Sci. 2018 Feb;43(2):136-148. doi: 10.1016/j.tibs.2017.12.003. Epub 2017 Dec 29.
7
Inheritance of Histones H3 and H4 during DNA Replication In Vitro.
Cell Rep. 2017 Oct 31;21(5):1361-1374. doi: 10.1016/j.celrep.2017.10.033.
8
Cryo-EM structure of Mcm2-7 double hexamer on DNA suggests a lagging-strand DNA extrusion model.
Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):E9529-E9538. doi: 10.1073/pnas.1712537114. Epub 2017 Oct 25.
9
Checkpoint Kinase Rad53 Couples Leading- and Lagging-Strand DNA Synthesis under Replication Stress.
Mol Cell. 2017 Oct 19;68(2):446-455.e3. doi: 10.1016/j.molcel.2017.09.018. Epub 2017 Oct 12.
10
Both DNA Polymerases δ and ε Contact Active and Stalled Replication Forks Differently.
Mol Cell Biol. 2017 Oct 13;37(21). doi: 10.1128/MCB.00190-17. Print 2017 Nov 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验