Suppr超能文献

基于字典的电特性层析成像。

Dictionary-based electric properties tomography.

机构信息

University Luebeck, Luebeck, Germany.

University of Applied Sciences, Hamburg, Germany.

出版信息

Magn Reson Med. 2019 Jan;81(1):342-349. doi: 10.1002/mrm.27401. Epub 2018 Sep 23.

Abstract

PURPOSE

To develop and validate a new algorithm called "dictionary-based electric properties tomography" (dbEPT) for deriving tissue electric properties from measured B maps.

METHODS

Inspired by Magnetic Resonance fingerprinting, dbEPT uses a dictionary of local patterns ("atoms") of B maps and corresponding electric properties distributions, derived from electromagnetic field simulations. For reconstruction, a pattern from a measured B map is compared with the B atoms of the dictionary. The B atom showing the best match with the measured B pattern yields the optimum electric properties pattern that is chosen for reconstruction. Matching was performed through machine learning algorithms. Two dictionaries, using transmit and transceive phases, were evaluated. The spatial distribution of local matching distance between optimal atom and measured pattern yielded a reconstruction reliability map. The method was applied to reconstruct conductivity of 4 volunteers' brains. A conventional, Helmholtz-based Electric properties tomography (EPT) reconstruction was performed for reference. Noise performance was studied through phantom simulations.

RESULTS

Quantitative values of conductivity agree with literature values. Results of the 2 dictionaries exhibit only minor differences. Somewhat larger differences are visible between dbEPT and Helmholtz-based EPT. Quantified by the correlation between conductivity and anatomic images, dbEPT depicts brain details more clearly than Helmholtz-based EPT. Matching distance is minimal in homogeneous brain ventricles and increases with tissue heterogeneity. Central processing unit time was approximately 2 minutes per dictionary training and 3 minutes per brain conductivity reconstruction using standard hardware equipment.

CONCLUSION

A new, dictionary-based approach for reconstructing electric properties is presented. Its conductivity reconstruction is able to overcome the EPT transceive-phase problem.

摘要

目的

开发并验证一种新的算法,称为“基于字典的电特性层析成像”(dbEPT),用于从测量的 B 映射中推导出组织电特性。

方法

受磁共振指纹技术的启发,dbEPT 使用 B 映射和相应的电特性分布的局部模式字典(“原子”),这些分布是从电磁场模拟中得出的。对于重建,将测量的 B 映射中的模式与字典中的 B 原子进行比较。与测量的 B 模式匹配最好的 B 原子产生最佳的电特性模式,该模式被选择用于重建。匹配是通过机器学习算法完成的。评估了使用发射和收发相位的两个字典。在最优原子和测量模式之间的局部匹配距离的空间分布产生了重建可靠性图。该方法应用于重建 4 名志愿者大脑的电导率。进行了传统的基于亥姆霍兹的电特性层析成像(EPT)重建作为参考。通过幻影模拟研究了噪声性能。

结果

电导率的定量值与文献值相符。两个字典的结果仅略有差异。dbEPT 和基于亥姆霍兹的 EPT 之间的差异略大。通过电导率与解剖图像之间的相关性进行量化,dbEPT 比基于亥姆霍兹的 EPT 更清晰地描绘了大脑细节。在均匀的脑室内匹配距离最小,并且随着组织异质性的增加而增加。使用标准硬件设备,每个字典训练大约需要 2 分钟,每个大脑电导率重建大约需要 3 分钟。

结论

提出了一种新的基于字典的电特性重建方法。其电导率重建能够克服 EPT 的收发相位问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验