文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用深度神经网络的通用 SNP 和小插入缺失变体调用器。

A universal SNP and small-indel variant caller using deep neural networks.

机构信息

Verily Life Sciences, Mountain View, California, USA.

Google Inc., Mountain View, California, USA.

出版信息

Nat Biotechnol. 2018 Nov;36(10):983-987. doi: 10.1038/nbt.4235. Epub 2018 Sep 24.


DOI:10.1038/nbt.4235
PMID:30247488
Abstract

Despite rapid advances in sequencing technologies, accurately calling genetic variants present in an individual genome from billions of short, errorful sequence reads remains challenging. Here we show that a deep convolutional neural network can call genetic variation in aligned next-generation sequencing read data by learning statistical relationships between images of read pileups around putative variant and true genotype calls. The approach, called DeepVariant, outperforms existing state-of-the-art tools. The learned model generalizes across genome builds and mammalian species, allowing nonhuman sequencing projects to benefit from the wealth of human ground-truth data. We further show that DeepVariant can learn to call variants in a variety of sequencing technologies and experimental designs, including deep whole genomes from 10X Genomics and Ion Ampliseq exomes, highlighting the benefits of using more automated and generalizable techniques for variant calling.

摘要

尽管测序技术发展迅速,但要从数十亿个短序列、易错的序列读取中准确地识别个体基因组中的遗传变异仍然具有挑战性。在这里,我们展示了一种深度卷积神经网络可以通过学习读取堆积图像与真实基因型调用之间的统计关系,从对齐的下一代测序读取数据中调用遗传变异。该方法称为 DeepVariant,其性能优于现有的最先进的工具。所学习的模型可以跨基因组构建和哺乳动物物种进行概括,从而允许非人类测序项目从丰富的人类真实数据中受益。我们进一步表明,DeepVariant 可以学习在各种测序技术和实验设计中调用变体,包括 10X Genomics 的深度全基因组和 Ion Ampliseq 外显子组,这突显了使用更自动化和更具通用性的技术进行变体调用的优势。

相似文献

[1]
A universal SNP and small-indel variant caller using deep neural networks.

Nat Biotechnol. 2018-9-24

[2]
dv-trio: a family-based variant calling pipeline using DeepVariant.

Bioinformatics. 2020-6-1

[3]
Lean and deep models for more accurate filtering of SNP and INDEL variant calls.

Bioinformatics. 2020-4-1

[4]
A multi-task convolutional deep neural network for variant calling in single molecule sequencing.

Nat Commun. 2019-3-1

[5]
DeepSV: accurate calling of genomic deletions from high-throughput sequencing data using deep convolutional neural network.

BMC Bioinformatics. 2019-12-12

[6]
Using genotype array data to compare multi- and single-sample variant calls and improve variant call sets from deep coverage whole-genome sequencing data.

Bioinformatics. 2017-4-15

[7]
Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls.

Nat Biotechnol. 2014-2-16

[8]
Calling known variants and identifying new variants while rapidly aligning sequence data.

J Dairy Sci. 2019-2-14

[9]
HELLO: improved neural network architectures and methodologies for small variant calling.

BMC Bioinformatics. 2021-8-14

[10]
Joint variant and de novo mutation identification on pedigrees from high-throughput sequencing data.

J Comput Biol. 2014-6

引用本文的文献

[1]
Performance comparison of germline variant calling tools in sporadic disease cohorts.

Mol Genet Genomics. 2025-9-6

[2]
Finding easy regions for short-read variant calling from pangenome data.

Gigascience. 2025-1-6

[3]
Artificial Intelligence and Chromothripsis.

Methods Mol Biol. 2025

[4]
Identification of a novel POU4F3 frameshift variant in a Chinese family with autosomal dominant hearing loss.

Eur J Med Res. 2025-8-27

[5]
Learning a refinement model for variant analysis in non-human primate genomes.

BMC Genomics. 2025-8-25

[6]
Increasing pathogenic germline variant diagnosis rates in precision medicine: current best practices and future opportunities.

Hum Genomics. 2025-8-22

[7]
Beyond the genome: the role of functional markers in contemporary plant breeding.

Front Plant Sci. 2025-8-5

[8]
Evolutionary Consequences of Unusually Large Pericentric TE-rich Regions in the Genome of a Neotropical Fig Wasp.

Genome Biol Evol. 2025-9-2

[9]
Indel calling from ONT sequencing data of family trios via sparse attention and 3D convolution.

Brief Bioinform. 2025-7-2

[10]
Selection Signature Analysis of Whole-Genome Sequences to Identify Genome Differences Between Selected and Unselected Holstein Cattle.

Animals (Basel). 2025-7-31

本文引用的文献

[1]
A synthetic-diploid benchmark for accurate variant-calling evaluation.

Nat Methods. 2018-7-16

[2]
16GT: a fast and sensitive variant caller using a 16-genotype probabilistic model.

Gigascience. 2017-7-1

[3]
A reference data set of 5.4 million phased human variants validated by genetic inheritance from sequencing a three-generation 17-member pedigree.

Genome Res. 2017-1

[4]
Analysis of protein-coding genetic variation in 60,706 humans.

Nature. 2016-8-18

[5]
Deep learning in bioinformatics.

Brief Bioinform. 2017-9-1

[6]
Extensive sequencing of seven human genomes to characterize benchmark reference materials.

Sci Data. 2016-6-7

[7]
Coming of age: ten years of next-generation sequencing technologies.

Nat Rev Genet. 2016-5-17

[8]
Medical implications of technical accuracy in genome sequencing.

Genome Med. 2016-3-2

[9]
Mastering the game of Go with deep neural networks and tree search.

Nature. 2016-1-28

[10]
A global reference for human genetic variation.

Nature. 2015-10-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索