Suppr超能文献

使用深度神经网络的通用 SNP 和小插入缺失变体调用器。

A universal SNP and small-indel variant caller using deep neural networks.

机构信息

Verily Life Sciences, Mountain View, California, USA.

Google Inc., Mountain View, California, USA.

出版信息

Nat Biotechnol. 2018 Nov;36(10):983-987. doi: 10.1038/nbt.4235. Epub 2018 Sep 24.

Abstract

Despite rapid advances in sequencing technologies, accurately calling genetic variants present in an individual genome from billions of short, errorful sequence reads remains challenging. Here we show that a deep convolutional neural network can call genetic variation in aligned next-generation sequencing read data by learning statistical relationships between images of read pileups around putative variant and true genotype calls. The approach, called DeepVariant, outperforms existing state-of-the-art tools. The learned model generalizes across genome builds and mammalian species, allowing nonhuman sequencing projects to benefit from the wealth of human ground-truth data. We further show that DeepVariant can learn to call variants in a variety of sequencing technologies and experimental designs, including deep whole genomes from 10X Genomics and Ion Ampliseq exomes, highlighting the benefits of using more automated and generalizable techniques for variant calling.

摘要

尽管测序技术发展迅速,但要从数十亿个短序列、易错的序列读取中准确地识别个体基因组中的遗传变异仍然具有挑战性。在这里,我们展示了一种深度卷积神经网络可以通过学习读取堆积图像与真实基因型调用之间的统计关系,从对齐的下一代测序读取数据中调用遗传变异。该方法称为 DeepVariant,其性能优于现有的最先进的工具。所学习的模型可以跨基因组构建和哺乳动物物种进行概括,从而允许非人类测序项目从丰富的人类真实数据中受益。我们进一步表明,DeepVariant 可以学习在各种测序技术和实验设计中调用变体,包括 10X Genomics 的深度全基因组和 Ion Ampliseq 外显子组,这突显了使用更自动化和更具通用性的技术进行变体调用的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验