文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

提高精准医学中致病种系变异的诊断率:当前最佳实践与未来机遇

Increasing pathogenic germline variant diagnosis rates in precision medicine: current best practices and future opportunities.

作者信息

Dukda Sonam, Kumar Manoharan, Calcino Andrew, Schmitz Ulf, Field Matt A

机构信息

Centre for Tropical Bioinformatics and Molecular Biology, College Science and Engineering, James Cook University, Cairns, QLD, Australia.

Centenary Institute, The University of Sydney, Camperdown, Australia.

出版信息

Hum Genomics. 2025 Aug 22;19(1):97. doi: 10.1186/s40246-025-00811-z.


DOI:10.1186/s40246-025-00811-z
PMID:40847372
Abstract

The accurate diagnosis of pathogenic variants is essential for effective clinical decision making within precision medicine programs. Despite significant advances in both the quality and quantity of molecular patient data, diagnostic rates remain suboptimal for many inherited diseases. As such, prioritisation and identification of pathogenic disease-causing variants remains a complex and rapidly evolving field. This review explores the latest technological and computational options being used to increase genetic diagnosis rates in precision medicine programs.While interpreting genetic variation via standards such as ACMG guidelines is increasingly being recognized as a gold standard approach, the underlying datasets and algorithms recommended are often slow to incorporate additional data types and methodologies. For example, new technological developments, particularly in single-cell and long-read sequencing, offer great opportunity to improve genetic diagnosis rates, however, how to best interpret and integrate increasingly complex multi-omics patient data remains unclear. Further, advances in artificial intelligence and machine learning applications in biomedical research offer enormous potential, however they require careful consideration and benchmarking given the clinical nature of the data. This review covers the current state of the art in available sequencing technologies, software methodologies for variant annotation/prioritisation, pedigree-based strategies and the potential role of machine learning applications. We describe a key set of design principles required for a modern multi-omic precision medicine framework that is robust, modular, secure, flexible, and scalable. Creating a next generation framework will ensure we realise the full potential of precision medicine into the future.

摘要

在精准医疗项目中,准确诊断致病变异对于有效的临床决策至关重要。尽管分子患者数据在质量和数量上都取得了显著进展,但对于许多遗传性疾病,诊断率仍不尽人意。因此,致病变异的优先级排序和识别仍然是一个复杂且快速发展的领域。本综述探讨了在精准医疗项目中用于提高基因诊断率的最新技术和计算方法。虽然通过诸如美国医学遗传学与基因组学学会(ACMG)指南等标准来解释基因变异越来越被视为一种金标准方法,但所推荐的基础数据集和算法往往难以快速纳入其他数据类型和方法。例如,新技术的发展,特别是在单细胞和长读长测序方面,为提高基因诊断率提供了巨大机遇,然而,如何最好地解释和整合日益复杂的多组学患者数据仍不明确。此外,人工智能和机器学习在生物医学研究中的应用进展具有巨大潜力,但鉴于数据的临床性质,需要仔细考虑和进行基准测试。本综述涵盖了现有测序技术、变异注释/优先级排序的软件方法、基于家系的策略以及机器学习应用的潜在作用的当前技术水平。我们描述了一个现代多组学精准医疗框架所需的一组关键设计原则,该框架应具备稳健性、模块化、安全性、灵活性和可扩展性。创建下一代框架将确保我们在未来充分发挥精准医疗的全部潜力。

相似文献

[1]
Increasing pathogenic germline variant diagnosis rates in precision medicine: current best practices and future opportunities.

Hum Genomics. 2025-8-22

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Precision Neuro-Oncology in Glioblastoma: AI-Guided CRISPR Editing and Real-Time Multi-Omics for Genomic Brain Surgery.

Int J Mol Sci. 2025-7-30

[4]
Improving the FAIRness and Sustainability of the NHGRI Resources Ecosystem.

ArXiv. 2025-8-19

[5]
Genetic determinants of testicular sperm extraction outcomes: insights from a large multicentre study of men with non-obstructive azoospermia.

Hum Reprod Open. 2025-8-29

[6]
Secondary findings in pediatric genomic testing: clinical insights from Turkey.

Eur J Pediatr. 2025-8-29

[7]
Allelic strengths of encephalopathy-associated variants correlate between in vivo and in vitro assays.

Elife. 2023-12-11

[8]
Developing evidence-based guidelines for describing potential benefits and harms within patient information leaflets/sheets (PILs) that inform and do not cause harm (PrinciPILs).

Health Technol Assess. 2025-8

[9]
The Use of AI for Phenotype-Genotype Mapping.

Methods Mol Biol. 2025

[10]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

本文引用的文献

[1]
Expanded T cell clones with lymphoma driver somatic mutations accumulate in refractory celiac disease.

Sci Transl Med. 2025-5-14

[2]
A triad of somatic mutagenesis converges in self-reactive B cells to cause a virus-induced autoimmune disease.

Immunity. 2025-2-11

[3]
Difficult decisions and possible choices: Rare diseases, genetic inheritance and reproduction of the family.

Soc Sci Med. 2024-12

[4]
Harnessing genomic technologies for one health solutions in the tropics.

Global Health. 2024-11-14

[5]
Predictive modeling of biomedical temporal data in healthcare applications: review and future directions.

Front Physiol. 2024-10-15

[6]
StratoMod: predicting sequencing and variant calling errors with interpretable machine learning.

Commun Biol. 2024-10-13

[7]
Perspectives on Bulk-Tissue RNA Sequencing and Single-Cell RNA Sequencing for Cardiac Transcriptomics.

Front Mol Med. 2022-2-22

[8]
Building Bridges for Federated Learning in Healthcare: Review on Approaches for Common Data Model Development.

Stud Health Technol Inform. 2024-7-24

[9]
ClinGen guidance for use of the PP1/BS4 co-segregation and PP4 phenotype specificity criteria for sequence variant pathogenicity classification.

Am J Hum Genet. 2024-1-4

[10]
Will variants of uncertain significance still exist in 2030?

Am J Hum Genet. 2024-1-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索