Dukda Sonam, Kumar Manoharan, Calcino Andrew, Schmitz Ulf, Field Matt A
Centre for Tropical Bioinformatics and Molecular Biology, College Science and Engineering, James Cook University, Cairns, QLD, Australia.
Centenary Institute, The University of Sydney, Camperdown, Australia.
Hum Genomics. 2025 Aug 22;19(1):97. doi: 10.1186/s40246-025-00811-z.
The accurate diagnosis of pathogenic variants is essential for effective clinical decision making within precision medicine programs. Despite significant advances in both the quality and quantity of molecular patient data, diagnostic rates remain suboptimal for many inherited diseases. As such, prioritisation and identification of pathogenic disease-causing variants remains a complex and rapidly evolving field. This review explores the latest technological and computational options being used to increase genetic diagnosis rates in precision medicine programs.While interpreting genetic variation via standards such as ACMG guidelines is increasingly being recognized as a gold standard approach, the underlying datasets and algorithms recommended are often slow to incorporate additional data types and methodologies. For example, new technological developments, particularly in single-cell and long-read sequencing, offer great opportunity to improve genetic diagnosis rates, however, how to best interpret and integrate increasingly complex multi-omics patient data remains unclear. Further, advances in artificial intelligence and machine learning applications in biomedical research offer enormous potential, however they require careful consideration and benchmarking given the clinical nature of the data. This review covers the current state of the art in available sequencing technologies, software methodologies for variant annotation/prioritisation, pedigree-based strategies and the potential role of machine learning applications. We describe a key set of design principles required for a modern multi-omic precision medicine framework that is robust, modular, secure, flexible, and scalable. Creating a next generation framework will ensure we realise the full potential of precision medicine into the future.
在精准医疗项目中,准确诊断致病变异对于有效的临床决策至关重要。尽管分子患者数据在质量和数量上都取得了显著进展,但对于许多遗传性疾病,诊断率仍不尽人意。因此,致病变异的优先级排序和识别仍然是一个复杂且快速发展的领域。本综述探讨了在精准医疗项目中用于提高基因诊断率的最新技术和计算方法。虽然通过诸如美国医学遗传学与基因组学学会(ACMG)指南等标准来解释基因变异越来越被视为一种金标准方法,但所推荐的基础数据集和算法往往难以快速纳入其他数据类型和方法。例如,新技术的发展,特别是在单细胞和长读长测序方面,为提高基因诊断率提供了巨大机遇,然而,如何最好地解释和整合日益复杂的多组学患者数据仍不明确。此外,人工智能和机器学习在生物医学研究中的应用进展具有巨大潜力,但鉴于数据的临床性质,需要仔细考虑和进行基准测试。本综述涵盖了现有测序技术、变异注释/优先级排序的软件方法、基于家系的策略以及机器学习应用的潜在作用的当前技术水平。我们描述了一个现代多组学精准医疗框架所需的一组关键设计原则,该框架应具备稳健性、模块化、安全性、灵活性和可扩展性。创建下一代框架将确保我们在未来充分发挥精准医疗的全部潜力。
Eur J Pediatr. 2025-8-29
Methods Mol Biol. 2025
Arch Ital Urol Androl. 2025-6-30
Global Health. 2024-11-14
Stud Health Technol Inform. 2024-7-24
Am J Hum Genet. 2024-1-4