Suppr超能文献

通过条件化在区间假设的多重检验中获得权力。

Gaining power in multiple testing of interval hypotheses via conditionalization.

机构信息

Behavioral Science Institute, Radboud University Nijmegen, Postbus 9104, 6500 HE, Nijmegen, The Netherlands.

Biomedical Data Sciences, Leiden University Medical Center, Postbus 9600, 2300 RC, Leiden, The Netherlands.

出版信息

Biostatistics. 2020 Apr 1;21(2):e65-e79. doi: 10.1093/biostatistics/kxy042.

Abstract

In this article, we introduce a novel procedure for improving power of multiple testing procedures (MTPs) of interval hypotheses. When testing interval hypotheses the null hypothesis $P$-values tend to be stochastically larger than standard uniform if the true parameter is in the interior of the null hypothesis. The new procedure starts with a set of $P$-values and discards those with values above a certain pre-selected threshold, while the rest are corrected (scaled-up) by the value of the threshold. Subsequently, a chosen family-wise error rate (FWER) or false discovery rate MTP is applied to the set of corrected $P$-values only. We prove the general validity of this procedure under independence of $P$-values, and for the special case of the Bonferroni method, we formulate several sufficient conditions for the control of the FWER. It is demonstrated that this "filtering" of $P$-values can yield considerable gains of power.

摘要

在本文中,我们介绍了一种改进区间假设多重检验程序(MTP)功效的新方法。当检验区间假设时,如果真实参数在假设的内部,零假设 P 值倾向于随机大于标准均匀分布。新方法从一组 P 值开始,丢弃那些超过某个预先选择的阈值的值,而其余的值则由阈值的值进行修正(放大)。随后,选择一个家族错误率(FWER)或错误发现率 MTP,仅应用于校正后的 P 值集。我们证明了在 P 值独立性下,该方法的普遍有效性,对于 Bonferroni 方法的特殊情况,我们提出了几个控制 FWER 的充分条件。结果表明,这种 P 值的“过滤”可以显著提高功效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验