Behavioral Science Institute, Radboud University Nijmegen, Postbus 9104, 6500 HE, Nijmegen, The Netherlands.
Biomedical Data Sciences, Leiden University Medical Center, Postbus 9600, 2300 RC, Leiden, The Netherlands.
Biostatistics. 2020 Apr 1;21(2):e65-e79. doi: 10.1093/biostatistics/kxy042.
In this article, we introduce a novel procedure for improving power of multiple testing procedures (MTPs) of interval hypotheses. When testing interval hypotheses the null hypothesis $P$-values tend to be stochastically larger than standard uniform if the true parameter is in the interior of the null hypothesis. The new procedure starts with a set of $P$-values and discards those with values above a certain pre-selected threshold, while the rest are corrected (scaled-up) by the value of the threshold. Subsequently, a chosen family-wise error rate (FWER) or false discovery rate MTP is applied to the set of corrected $P$-values only. We prove the general validity of this procedure under independence of $P$-values, and for the special case of the Bonferroni method, we formulate several sufficient conditions for the control of the FWER. It is demonstrated that this "filtering" of $P$-values can yield considerable gains of power.
在本文中,我们介绍了一种改进区间假设多重检验程序(MTP)功效的新方法。当检验区间假设时,如果真实参数在假设的内部,零假设 P 值倾向于随机大于标准均匀分布。新方法从一组 P 值开始,丢弃那些超过某个预先选择的阈值的值,而其余的值则由阈值的值进行修正(放大)。随后,选择一个家族错误率(FWER)或错误发现率 MTP,仅应用于校正后的 P 值集。我们证明了在 P 值独立性下,该方法的普遍有效性,对于 Bonferroni 方法的特殊情况,我们提出了几个控制 FWER 的充分条件。结果表明,这种 P 值的“过滤”可以显著提高功效。