Suppr超能文献

一种区分单调同质性与单调多因子模型的检验方法。

A Test to Distinguish Monotone Homogeneity from Monotone Multifactor Models.

机构信息

Behavioural Science Institute, Radboud University Nijmegen, P.O.B. 9104, 6500 HE,  Nijmegen, The Netherlands.

Tilburg University, Tilburg, The Netherlands.

出版信息

Psychometrika. 2023 Jun;88(2):387-412. doi: 10.1007/s11336-023-09905-w. Epub 2023 Mar 18.

Abstract

The goodness-of-fit of the unidimensional monotone latent variable model can be assessed using the empirical conditions of nonnegative correlations (Mokken in A theory and procedure of scale-analysis, Mouton, The Hague, 1971), manifest monotonicity (Junker in Ann Stat 21:1359-1378, 1993), multivariate total positivity of order 2 (Bartolucci and Forcina in Ann Stat 28:1206-1218, 2000), and nonnegative partial correlations (Ellis in Psychometrika 79:303-316, 2014). We show that multidimensional monotone factor models with independent factors also imply these empirical conditions; therefore, the conditions are insensitive to multidimensionality. Conditional association (Rosenbaum in Psychometrika 49(3):425-435, 1984) can detect multidimensionality, but tests of it (De Gooijer and Yuan in Comput Stat Data Anal 55:34-44, 2011) are usually not feasible for realistic numbers of items. The only existing feasible test procedures that can reveal multidimensionality are Rosenbaum's (Psychometrika 49(3):425-435, 1984) Case 2 and Case 5, which test the covariance of two items or two subtests conditionally on the unweighted sum of the other items. We improve this procedure by conditioning on a weighted sum of the other items. The weights are estimated in a training sample from a linear regression analysis. Simulations show that the Type I error rate is under control and that, for large samples, the power is higher if one dimension is more important than the other or if there is a third dimension. In small samples and with two equally important dimensions, using the unweighted sum yields greater power.

摘要

单调单维潜变量模型的拟合优度可以使用非负相关性的经验条件(Mokken 在《A Theory and Procedure of Scale-Analysis》,Mouton,海牙,1971)、明显单调性(Junker 在《Ann Stat》21:1359-1378, 1993)、二阶多元全正性(Bartolucci 和 Forcina 在《Ann Stat》28:1206-1218, 2000)和非负偏相关性(Ellis 在《Psychometrika》79:303-316, 2014)来评估。我们表明,具有独立因子的多维单调因子模型也蕴涵这些经验条件;因此,这些条件对多维性不敏感。条件关联(Rosenbaum 在《Psychometrika》49(3):425-435, 1984)可以检测多维性,但对其进行检验的测试(De Gooijer 和 Yuan 在《Comput Stat Data Anal》55:34-44, 2011)通常不适用于实际数量的项目。唯一可行的揭示多维性的测试程序是 Rosenbaum 的(Psychometrika 49(3):425-435, 1984)案例 2 和案例 5,它们根据其他项目的未加权总和有条件地检验两个项目或两个子测试的协方差。我们通过对其他项目的加权总和进行条件化来改进该程序。权重是在来自线性回归分析的训练样本中估计的。模拟表明,I 型错误率得到控制,并且对于大样本,如果一个维度比另一个维度更重要或者存在第三个维度,则功率更高。在小样本和两个同等重要的维度中,使用未加权总和会产生更高的功率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/099a/10188426/dc5ad9085616/11336_2023_9905_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验