German Environment Agency, section drinking water treatment and water resource protection, Schichauweg 58, 12307 Berlin, Germany.
German Environment Agency, section drinking water treatment and water resource protection, Schichauweg 58, 12307 Berlin, Germany.
Sci Total Environ. 2018 Dec 15;645:1153-1158. doi: 10.1016/j.scitotenv.2018.07.189. Epub 2018 Jul 21.
Engineered nanomaterials (ENM) such as nano-sized cerium dioxide (CeO) are increasingly applied. Meanwhile, concerns on their environmental fate are rising. Understanding the fate of ENM within and between environmental compartments such as surface water and groundwater is crucial for the protection of drinking water resources. Therefore, the colloidal stability of CeO ENM (2 mg L) was assessed with various surface coatings featuring different physico-chemical properties such as weakly anionic polyvinyl alcohol (PVA), strongly anionic polyacrylic acid (PAA) or complex natural organic matter (NOM) at various water compositions in batch experiments (pH 2-12, ionic strength 0-5 mM KCl or CaCl). While uncoated CeO ENM aggregate in the range of pH 4-8 in 1 mM KCl solution, the results show that PAA, PVA and NOM surface coatings stabilize CeO-ENM at neutral and alkaline pH in 1 mM KCl solution. Stabilization by PAA and NOM is associated with strongly negative zeta potentials below -20 mV, suggesting electrostatic repulsion as stabilization mechanism. No aggregation was detected up to 5 mM KCl for PAA- and NOM-coated CeO ENM. In contrast, CaCl induced aggregation at >2.2 mM CaCl for PAA and NOM-coated CeO ENM respectively. PVA-coated ENM showed zeta potentials of -15 mV to -5 mV in the presence of 0-5 mM ionic strength, suggesting steric effects as stabilization mechanism. The hydrodynamic diameter of PVA-coated ENM was larger compared to PAA and NOM at low ionic strength, but the size did not increase with ionic strength of the suspensions. The effect of ionic strength and counter ion valency (pH 7) on the colloidal stability of ENM depends on the prevailing stabilization mechanism of the organic coating. NOM can be similarly effective in colloidal stabilization of CeO-ENM as PAA. Our results suggest natural Ca-rich waters will lead to ENM agglomeration even of coated CeO-ENM.
工程纳米材料(ENM),如纳米级二氧化铈(CeO),应用越来越广泛。与此同时,人们对其环境归宿的担忧也在增加。了解 ENM 在地表水和地下水等环境隔室中的归宿,对于保护饮用水资源至关重要。因此,在批处理实验中,使用具有不同物理化学性质的各种表面涂层(如弱阴离子性聚乙烯醇(PVA)、强阴离子性聚丙烯酸(PAA)或复杂天然有机物(NOM))评估了 CeO ENM(2mg/L)的胶体稳定性,各种水成分(pH 2-12、离子强度 0-5mM KCl 或 CaCl)。当未涂层的 CeO ENM 在 1mM KCl 溶液中的 pH 4-8 范围内聚集时,结果表明 PAA、PVA 和 NOM 表面涂层在 1mM KCl 溶液的中性和碱性 pH 下稳定 CeO-ENM。PAA 和 NOM 的稳定作用与低于-20mV 的强烈负 zeta 电位相关,表明静电排斥是稳定机制。对于 PAA 和 NOM 涂层的 CeO ENM,在高达 5mM KCl 时未检测到聚集。相比之下,CaCl 在 PAA 和 NOM 涂层的 CeO ENM 中分别在>2.2mM CaCl 时诱导聚集。在 0-5mM 离子强度存在下,PVA 涂层的 ENM 的 zeta 电位为-15mV 至-5mV,表明空间位阻效应是稳定机制。在低离子强度下,PVA 涂层的 ENM 的水动力直径大于 PAA 和 NOM,但随着悬浮液的离子强度增加,尺寸并未增加。离子强度和抗衡离子价态(pH 7)对 ENM 胶体稳定性的影响取决于有机涂层的主要稳定机制。NOM 可以与 PAA 一样有效地稳定 CeO-ENM 的胶体。我们的结果表明,即使是涂层的 CeO-ENM,富含 Ca 的天然水也会导致 ENM 聚集。