Suppr超能文献

一种混合克立格/土地利用回归模型来评估 PM 的时空变异性。

A hybrid kriging/land-use regression model to assess PM spatial-temporal variability.

机构信息

Department of Geomatics, National Cheng Kung University, Tainan, Taiwan; Department of Forestry and Natural Resources, National Chiayi University, Chiayi, Taiwan.

Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan; Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan; Institute of Environmental Health, National Taiwan University, Taipei, Taiwan.

出版信息

Sci Total Environ. 2018 Dec 15;645:1456-1464. doi: 10.1016/j.scitotenv.2018.07.073. Epub 2018 Jul 23.

Abstract

Proximate pollutant data can provide information for land-use predictors in LUR models, when coupled with spatial interpolation of ambient pollutant measurements, may provide better pollutant predictions. This study applies a hybrid kriging/LUR model to assess the spatial-temporal variability of PM for Taiwan. Using PM concentrations at 71 EPA monitoring stations from 2006 to 2011, pollutant gradient surfaces were spatially interpolated using a leave-one-out ordinary kriging method based on "n-1" observations. The predicted concentration level of the targeted site was then extracted from the generated kriging map and adopted as a variable in LUR modelling. Annual and monthly resolutions of LUR models were developed to assess the effects by incorporating kriging-based estimates into pollutant predictions. The R obtained from conventional LUR procedures was 0.66 and 0.70 for annual and monthly models, respectively, whereas models using the hybrid approach showed better explanatory power (R of annual model: 0.85; R of monthly model: 0.88). Moreover, kriging-based PM estimates were the most important factor in the resultant models according to the dominant partial R of 0.82 and 0.7 in monthly and yearly models. Cross-validation and external data verification showed similar results, demonstrating robustness of the proposed approach. Using governmental pollutant observations is usually publicly available for most areas, this method provides an efficient mean to better assess PM spatial-temporal variations and predicts levels for nonmonitored areas.

摘要

近程污染物数据可以为 LUR 模型中的土地利用预测因子提供信息,而与环境污染物测量的空间插值相结合,可能会提供更好的污染物预测结果。本研究应用混合克立格/ LUR 模型来评估台湾地区 PM 的时空变化。利用 2006 年至 2011 年间 71 个 EPA 监测站的 PM 浓度数据,采用基于“n-1”观测的逐个站点剔除普通克立格方法对污染物梯度面进行空间插值。然后,从生成的克立格图中提取目标站点的预测浓度水平,并将其用作 LUR 模型中的变量。采用 LUR 模型进行年度和月度分辨率的研究,以评估通过将基于克立格的估算值纳入污染物预测来评估影响。传统 LUR 程序获得的 R 值分别为 0.66 和 0.70,适用于年度和月度模型,而使用混合方法的模型显示出更好的解释能力(年度模型的 R 值为 0.85;月度模型的 R 值为 0.88)。此外,根据月度和年度模型中占主导地位的偏 R 值 0.82 和 0.7,基于克立格的 PM 估算值是最终模型中最重要的因素。交叉验证和外部数据验证也得到了类似的结果,证明了所提出方法的稳健性。由于政府污染物观测通常在大多数地区都可以公开获得,因此该方法提供了一种有效手段,可以更好地评估 PM 的时空变化,并预测非监测地区的水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验