Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.
Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.
Sci Total Environ. 2018 Sep 1;634:77-86. doi: 10.1016/j.scitotenv.2018.03.308. Epub 2018 Apr 4.
Land-use regression (LUR) has been used to model local spatial variability of particulate matter in cities of high-income countries. Performance of LUR models is unknown in less urbanized areas of low-/middle-income countries (LMICs) experiencing complex sources of ambient air pollution and which typically have limited land use data. To address these concerns, we developed LUR models using satellite imagery (e.g., vegetation, urbanicity) and manually-collected data from a comprehensive built-environment survey (e.g., roads, industries, non-residential places) for a peri-urban area outside Hyderabad, India. As part of the CHAI (Cardiovascular Health effects of Air pollution in Telangana, India) project, concentrations of fine particulate matter (PM) and black carbon were measured over two seasons at 23 sites. Annual mean (sd) was 34.1 (3.2) μg/m for PM and 2.7 (0.5) μg/m for black carbon. The LUR model for annual black carbon explained 78% of total variance and included both local-scale (energy supply places) and regional-scale (roads) predictors. Explained variance was 58% for annual PM and the included predictors were only regional (urbanicity, vegetation). During leave-one-out cross-validation and cross-holdout validation, only the black carbon model showed consistent performance. The LUR model for black carbon explained a substantial proportion of the spatial variability that could not be captured by simpler interpolation technique (ordinary kriging). This is the first study to develop a LUR model for ambient concentrations of PM and black carbon in a non-urban area of LMICs, supporting the applicability of the LUR approach in such settings. Our results provide insights on the added value of manually-collected built-environment data to improve the performance of LUR models in settings with limited data availability. For both pollutants, LUR models predicted substantial within-village variability, an important feature for future epidemiological studies.
基于卫星图像(如植被、城市化)和综合建筑环境调查(如道路、工业、非住宅场所)手动收集的数据,我们在印度海得拉巴以外的一个城郊地区开发了用于建模局部空间变化的空气污染物(如细颗粒物和黑碳)的土地利用回归(LUR)模型。作为 CHAI(印度特兰加纳空气污染对心血管健康的影响)项目的一部分,在 23 个地点测量了两个季节的细颗粒物和黑碳浓度。年平均值(标准差)分别为 34.1(3.2)μg/m³和 2.7(0.5)μg/m³。年黑碳的 LUR 模型解释了总方差的 78%,包括局部尺度(能源供应场所)和区域尺度(道路)的预测因子。年 PM 的解释方差为 58%,包括的预测因子仅为区域尺度(城市化、植被)。在留一法交叉验证和交叉保持验证期间,只有黑碳模型表现出一致的性能。黑碳的 LUR 模型解释了空间变异性的很大一部分,这部分不能被更简单的插值技术(普通克里金法)捕捉到。这是第一项在 LMIC 非城市地区开发用于空气污染物(如 PM 和黑碳)的 LUR 模型的研究,支持了 LUR 方法在这种环境下的适用性。我们的结果为手动收集的建筑环境数据在数据有限的情况下如何提高 LUR 模型的性能提供了见解。对于这两种污染物,LUR 模型都预测了村庄内的大量变异性,这是未来进行流行病学研究的一个重要特征。