Suppr超能文献

使用带有机器学习的土地利用回归模型来估算地面PM。

Using a land use regression model with machine learning to estimate ground level PM.

作者信息

Wong Pei-Yi, Lee Hsiao-Yun, Chen Yu-Cheng, Zeng Yu-Ting, Chern Yinq-Rong, Chen Nai-Tzu, Candice Lung Shih-Chun, Su Huey-Jen, Wu Chih-Da

机构信息

Department of Environmental and Occupational Health, National Cheng Kung University, Tainan, Taiwan.

Department of Leisure Industry and Health Promotion, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan.

出版信息

Environ Pollut. 2021 May 15;277:116846. doi: 10.1016/j.envpol.2021.116846. Epub 2021 Mar 1.

Abstract

Ambient fine particulate matter (PM) has been ranked as the sixth leading risk factor globally for death and disability. Modelling methods based on having access to a limited number of monitor stations are required for capturing PM spatial and temporal continuous variations with a sufficient resolution. This study utilized a land use regression (LUR) model with machine learning to assess the spatial-temporal variability of PM. Daily average PM data was collected from 73 fixed air quality monitoring stations that belonged to the Taiwan EPA on the main island of Taiwan. Nearly 280,000 observations from 2006 to 2016 were used for the analysis. Several datasets were collected to determine spatial predictor variables, including the EPA environmental resources dataset, a meteorological dataset, a land-use inventory, a landmark dataset, a digital road network map, a digital terrain model, MODIS Normalized Difference Vegetation Index (NDVI) database, and a power plant distribution dataset. First, conventional LUR and Hybrid Kriging-LUR were utilized to identify the important predictor variables. Then, deep neural network, random forest, and XGBoost algorithms were used to fit the prediction model based on the variables selected by the LUR models. Data splitting, 10-fold cross validation, external data verification, and seasonal-based and county-based validation methods were used to verify the robustness of the developed models. The results demonstrated that the proposed conventional LUR and Hybrid Kriging-LUR models captured 58% and 89% of PM variations, respectively. When XGBoost algorithm was incorporated, the explanatory power of the models increased to 73% and 94%, respectively. The Hybrid Kriging-LUR with XGBoost algorithm outperformed the other integrated methods. This study demonstrates the value of combining Hybrid Kriging-LUR model and an XGBoost algorithm for estimating the spatial-temporal variability of PM exposures.

摘要

环境细颗粒物(PM)已被列为全球第六大致死和致残风险因素。为了以足够的分辨率捕捉PM的时空连续变化,需要基于有限数量监测站的建模方法。本研究利用土地利用回归(LUR)模型和机器学习来评估PM的时空变异性。从台湾环保署在台湾主岛的73个固定空气质量监测站收集了每日平均PM数据。使用了2006年至2016年近280,000条观测数据进行分析。收集了几个数据集以确定空间预测变量,包括环保署环境资源数据集、气象数据集、土地利用清单、地标数据集、数字道路网络图、数字地形模型、MODIS归一化植被指数(NDVI)数据库和发电厂分布数据集。首先,利用传统LUR和混合克里金- LUR来识别重要的预测变量。然后,基于LUR模型选择的变量,使用深度神经网络、随机森林和XGBoost算法来拟合预测模型。采用数据拆分、10折交叉验证、外部数据验证以及基于季节和基于县的验证方法来验证所开发模型的稳健性。结果表明,所提出的传统LUR和混合克里金- LUR模型分别捕捉了58%和89%的PM变化。当纳入XGBoost算法时,模型的解释力分别提高到73%和94%。具有XGBoost算法的混合克里金- LUR优于其他集成方法。本研究证明了结合混合克里金- LUR模型和XGBoost算法来估计PM暴露时空变异性的价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验